Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 541 - 570 of 10931

Full-Text Articles in Biomedical Engineering and Bioengineering

Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery, Connor Berger Dec 2022

Small-Separation Speckle Contrast Optical Spectroscopy For Intraoperative Assessment Of Parathyroid Glands Viability During Thyroid Surgery, Connor Berger

Symposium of Student Scholars

The parathyroid glands (PTGs) are often damaged during thyroid surgeries due to a lack of methods identifying PTGs and assessing their viability. Damage to PTGs can cause hypocalcemia, a deficiency of calcium in the body. This complication can lead to detrimental consequences with economic burden. The surgeon’s current method of viability assessment is qualitative and subjective. Our technical solution is to employ an optical technique called speckle contrast optical spectroscopy (SCOS) that noninvasively quantifies the blood flow index (Db) of biological tissues at deep tissue levels (>1cm). The goal of this project is to verify SCOS at small source-detector-separation …


Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul Dec 2022

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul

Chemical and Biochemical Engineering Publications

No abstract provided.


Neurorretinitis Por Arañazo De Gato: A Propósito De Un Caso, Fernando Godín Estrada, Eduardo Enrique Cadena Galvis, Laura Alejandra Acevedo Espitia, Diana Valeria Rey-Rodríguez Dec 2022

Neurorretinitis Por Arañazo De Gato: A Propósito De Un Caso, Fernando Godín Estrada, Eduardo Enrique Cadena Galvis, Laura Alejandra Acevedo Espitia, Diana Valeria Rey-Rodríguez

Ciencia y Tecnología para la Salud Visual y Ocular

La enfermedad por arañazo de gato es una zoonosis distribuida por todo el mundo. En esa condición, los gatos son el reservorio primario de Bartonella henselae, siendo la pulga del gato (Ctenocephalides felis) el principal vector entre ellos. Dicha enfermedad se caracteriza por manifestaciones sistémicas predominantes en el cerebro, el ojo, el hígado, el bazo y el hueso. En este estudio se presenta el caso de una paciente femenina de 29 años, quien consultó por disminución de agudeza visual (AV) y dolor ocular pulsátil de intensidad 8/10, según la escala visual análoga (EVA) en el ojo izquierdo (OI), sin síntomas …


Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew Dec 2022

Six-Dimensional Single-Molecule Imaging With Isotropic Resolution Using A Multi-View Reflector Microscope, Oumeng Zhang, Zijian Guo, Yuanyuan He, Tingting Wu, Michael D. Vahey, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Imaging of both the positions and orientations of single fluorophores, termed single-molecule orientation-localization microscopy, is a powerful tool for the study of biochemical processes. However, the limited photon budget associated with single-molecule fluorescence makes high-dimensional imaging with isotropic, nanoscale spatial resolution a formidable challenge. Here we realize a radially and azimuthally polarized multi-view reflector (raMVR) microscope for the imaging of the three-dimensional (3D) positions and 3D orientations of single molecules, with precisions of 10.9 nm and 2.0° over a 1.5-μm depth range. The raMVR microscope achieves 6D super-resolution imaging of Nile red molecules transiently bound to lipid-coated spheres, accurately resolving …


Color Resolved Cherenkov Imaging Allows For Differential Signal Detection In Blood And Melanin Content, Vihan A. Wickramasinghe Dec 2022

Color Resolved Cherenkov Imaging Allows For Differential Signal Detection In Blood And Melanin Content, Vihan A. Wickramasinghe

Dartmouth College Master’s Theses

Cherenkov imaging in radiation therapy allows a video display of the irradiation beam on the patient’s tissue, for visualization of the treatment. High energy radiation from a linear accelerator (Linac) results in the production of spectrally-continuous broadband light inside tissue due to the Cherenkov effect; this light is then attenuated by tissue features from transport and exits from the delivery site. Progress with the development of color Cherenkov imaging has opened the possibility for some level of spectroscopic imaging of the light-tissue interaction and interpretation of the specific nature of the tissue being irradiated. Generally, there is a linear relationship …


Lipids Affect The Diffusion Of Estradiol In Osteonal Bone, Nicholas Anthony Cimino Dec 2022

Lipids Affect The Diffusion Of Estradiol In Osteonal Bone, Nicholas Anthony Cimino

ETD Archive

In healthy osteonal bone, embedded osteocytes form an intercellular communication network through overlapping cell membrane extensions, possibly defining an overlooked and clinically relevant lipid-mediated transport pathway for nonpolar molecules. Previous techniques evaluating solute transport in cortical bone limit tissue analysis to microscale areas (less than 1 mm2) using tracers and assumptions that diminish clinical relevance, presenting the need for an improved method to evaluate solute diffusion in macroscale areas (greater than 1 mm2) of osteonal bone. A new diffusion system - constructed of glass and polytetrafluoroethylene - was designed and validated for this purpose, exhibiting minimal adsorption of solutes and …


Predictions Of Indentation Stiffness Of Musculoskeletal Regions Using Ultrasound, Sean Doherty Dec 2022

Predictions Of Indentation Stiffness Of Musculoskeletal Regions Using Ultrasound, Sean Doherty

ETD Archive

Tissue indentation response is an important metric for understanding how different musculoskeletal regions respond to loading and is a function of the tissue’s form. Modem imaging techniques provide information about the internal structures of human tissue. Ultrasound remains one of the most common imaging techniques performed, given its portability and low costs. Prior work and data collection on 100 patients involved the collection of ultrasound images at eight different locations across the musculoskeletal extremities. Given the tissue structure information that the medical imaging provided, it was hypothesized that the mechanical properties of the tissue could be predicted from this data. …


An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin Dec 2022

An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin

Electrical Engineering Theses

Inflammatory biomarkers present in the human body play a vital role in medical field by guiding the clinician in decision-making for many diseases. The levels of these inflammatory biomarkers are associated with the severity and progress of several diseases. Researchers have found that increasing severity of many diseases such as cardiovascular disease, after surgery infection, and adverse clinical outcomes due to infectious diseases, results in the elevation of the level of inflammatory biomarkers in human sweat. Furthermore, the inflammatory cytokines indicate the pathophysiology and prognosis of critically ill SARS‑CoV‑2 patients. In this thesis work, different sensors have been developed for …


Dendrimer-Based Drug Delivery Systems: History, Challenges, And Latest Developments, Juan Wang, Boxuan Li, Li Qiu, Xin Qiao, Hu Yang Dec 2022

Dendrimer-Based Drug Delivery Systems: History, Challenges, And Latest Developments, Juan Wang, Boxuan Li, Li Qiu, Xin Qiao, Hu Yang

Chemical and Biochemical Engineering Faculty Research & Creative Works

Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer's history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from …


Scalable Data-Driven Predictive Modeling And Analytics For Cho Process Development Optimization, Sarah Mbiki Dec 2022

Scalable Data-Driven Predictive Modeling And Analytics For Cho Process Development Optimization, Sarah Mbiki

All Dissertations

In 1982, the FDA approved the first recombinant therapeutic protein, and since then, the biopharmaceutical industry has continued to develop innovative and highly effective biological drugs for various illnesses1. These drugs are produced using host organisms that are modified to hold the genetic encoding of the targeted protein1. Of the many host organisms, Chinese hamster ovary (CHO) cells are often used due to capability to perform posttranslational modification (PTM): which allows human-like synthesis of proteins unlikely to invoke immunogenicity in humans 1,2.

Despite all the positive attributes, many challenges are associated with CHO cell cultures, …


Investigating Spatial Heterogeneity In Myocardial Wound Environments To Improve Therapy, Michael Potter Dec 2022

Investigating Spatial Heterogeneity In Myocardial Wound Environments To Improve Therapy, Michael Potter

All Dissertations

Heart failure is a broad pathology manifestation categorized by an inability of the heart to successfully pump blood throughout the vast vessel network of the body. Within the United States, heart failure is projected to increase by approximately 46% from 2012 to 2030. Modalities of heart failure are generally related to wall mechanics that are impacted following myocardial infarction events. Interplay exists between the wall mechanics, responding cell populations, and the spatial heterogeneities in the resultant scar. This interplay directs the myocardium towards heart failure modalities governed by overly stiff or compliant states. It is essential to elucidate details underlying …


In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman Dec 2022

In Vitro Bioreactor For Mechanical Control And Characterization Of Tissue Constructs, Samuel Coeyman

All Dissertations

Heart failure (HF) currently affects over 6 million Americans, 50% of whom die within 5 years of their initial diagnosis. A major contributor to the onset of HF is cardiac fibrosis in the myocardium, which arises when fibroblasts (FBs) are activated in response to heightened mechanical stress from overload conditions like hypertension. Activated FBs remodel the extracellular matrix (ECM) and secrete ECM proteins including collagen. FB remodeling has been studied in the past by applying forces and/or deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be …


Development Of A Tissue Engineered Cardiac Patch, Howard Herbert Dec 2022

Development Of A Tissue Engineered Cardiac Patch, Howard Herbert

All Dissertations

Cardiovascular Disease(CVD) is the leading cause of mortality in the developed world. CVD is most commonly manifested as atherosclerosis of the coronary arteries leading to Myocardial Infarction(MI). After MI, fibrosis of the ventricular wall leads to heart failure(HF), a pandemic affecting 26 million people globally. While therapies are continuously developed to combat HF, the treatment of choice, whole heart transplant, is limited by the availability of donor hearts. It is clear that there is a need to develop a long-term solution to combat HF and its enormous economic burden. Tissue Engineering and Regenerative Medicine holds promise as a possible solution …


Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera Dec 2022

Enhancing Human Schwann Cells Reparative Behavior Using Heparin/Collagen Layer-By-Layer Coatings, Luis Carlos Pinzon-Herrera

Graduate Theses and Dissertations

When a peripheral nerve injury (PNI) occurs, the gold standard for tissue regeneration is the use of autografts. However, due to the secondary effects produced by multiple surgeries involved in the removal and implantation of autografts for very small lesions, it is possible to replace them with the use of Nerve Guide Conduits (NGCs). However, NGCs are limited to short lesions (less than 1 cm). This limitation is caused by the absence of compounds in the extracellular matrix (ECM) that autografts can provide. Since much of the regenerative process takes place on the NGC surface, our work aims to modify …


Tibial Compression During Activities Of Daily Living In Young And Older Adults, Elijah Miles Walker Dec 2022

Tibial Compression During Activities Of Daily Living In Young And Older Adults, Elijah Miles Walker

Boise State University Theses and Dissertations

Introduction: Stress fracture, particularly in the tibia, is a growing concern among older adults (greater than 65 years). Older adults may have inherent stress fracture risk from ageing-related changes to their musculoskeletal system. Specifically, older adults reduced ankle neuromuscular function may impair their ability to attenuate repetitive compressive forces experienced during daily locomotor tasks and increase the likelihood of suffering bone damage from decreased bone tissue elasticity. Yet, it is currently unknown if older adults exhibit greater tibial compression than their younger counterparts during locomotor tasks. Purpose: This study sought to quantify tibial compression for older and younger adults when …


Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams Dec 2022

Iron Nanoparticles For Magnetic Imaging Applications, Aleia Williams

Masters Theses

Extensive research on iron oxide nanoparticles for various applications including nanomedicine, energy applications, environmental remediation, and magnetic imaging have previously been performed. Many are currently FDA approved as magnetic resonance imaging contrast agents and tracers for magnetic particle imaging applications. Magnetic properties of such materials are crucial to obtain good contrast and resolution. However, studies have shown the magnetic properties of iron oxide nanoparticles are less in comparison to those found in pure iron nanoparticle.

This research involves the synthesis and characterization of iron nanoparticles for applications in magnetic resonance imaging contrast agents, magnetic particle imaging tracers, and therapeutic agents …


Development Of Enzyme-Responsive Polymersomes As A Drug Delivery System For Gm1 Gangliosidosis, Bipin Chakravarthy Paruchuri Dec 2022

Development Of Enzyme-Responsive Polymersomes As A Drug Delivery System For Gm1 Gangliosidosis, Bipin Chakravarthy Paruchuri

All Dissertations

GM1 gangliosidosis is a lysosomal storage disorder caused by deficiency of β-galactosidase (βgal) and subsequent accumulation of GM1 ganglioside in lysosomes. The rare nature of this disorder presents challenges with prognosis and treatment. Enzyme replacement therapy (ERT) can effectively treat systemic deficiencies, but the intravenously administered enzyme cannot cross the blood-brain barrier (BBB) to treat the central nervous system. A delivery system to encapsulate and deliver the enzyme can facilitate enzyme transport across the BBB with suitable surface modifications. One of the pathological aspects of GM1-affected cells is the upregulation of the lysosomal enzyme hexosaminidase A (HexA). In this dissertation, …


Image-Based Cancer Diagnosis Using Novel Deep Neural Networks, Hosein Barzekar Dec 2022

Image-Based Cancer Diagnosis Using Novel Deep Neural Networks, Hosein Barzekar

Theses and Dissertations

Cancer is the major cause of death in many nations. This serious illness can only be effectivelytreated if it is diagnosed early. In contrast, biomedical imaging presents challenges to both clinical institutions and researchers. Physiological anomalies are often characterized by modest modifications in individual cells or tissues, making them difficult to detect visually. Physiological anomalies are often characterized by slight abnormalities in individual cells or tissues, making them difficult to detect visually. Traditionally, anomalies are diagnosed by radiologists and pathologists with extensive training. This procedure, however, demands the participation of professionals and incurs a substantial expense, making the classification of …


The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah Dec 2022

The Role Of Generative Adversarial Networks In Bioimage Analysis And Computational Diagnostics., Ahmed Naglah

Electronic Theses and Dissertations

Computational technologies can contribute to the modeling and simulation of the biological environments and activities towards achieving better interpretations, analysis, and understanding. With the emergence of digital pathology, we can observe an increasing demand for more innovative, effective, and efficient computational models. Under the umbrella of artificial intelligence, deep learning mimics the brain’s way in learn complex relationships through data and experiences. In the field of bioimage analysis, models usually comprise discriminative approaches such as classification and segmentation tasks. In this thesis, we study how we can use generative AI models to improve bioimage analysis tasks using Generative Adversarial Networks …


Mango Surface Color Features Measurement Using Digital Image Processing, Md Towfiqur Rahman, Goutom Kumar, Md Abdul Momin Dec 2022

Mango Surface Color Features Measurement Using Digital Image Processing, Md Towfiqur Rahman, Goutom Kumar, Md Abdul Momin

Biological Systems Engineering: Papers and Publications

Summary

Postharvest processing of agricultural produce is still done the conventional way in Bangladesh. Manual grading of agricultural produce, especially fruits and vegetables, is laborious and costly due to acute shortage of labor during the peak season, as well as difficulty maintaining the product quality. Machine vision system (MVS) applications are widely used nowadays as a non-destructive and cost-effective technology for automatically grading and sorting large volumes of produce in the packing house according to size, shape, color, texture, and surface defects. In this study, a simple MVS was constructed measuring different color features of mango fruit surface as a …


Development Of Optical Coherence Tomography Angiography System For Mouse Eye Imaging And Measurement Of Vasodilation, Yilin Li Dec 2022

Development Of Optical Coherence Tomography Angiography System For Mouse Eye Imaging And Measurement Of Vasodilation, Yilin Li

McKelvey School of Engineering Theses & Dissertations

Optical coherence tomography angiography (OCTA) is broadly known as a non-invasive technology that allows examining the retinal and choroidal vasculatures, alternative to fluorescein angiography. In this study, we have developed an optical coherence tomography (OCT) system for imaging the mouse eye. We measure the retinal thickness, which is 216.53um. We apply OCTA to characterize the quantitative change in vessel diameter and the perfusion density of the retina after the wild-type mice are administered the adenosine or inhale carbon dioxide. Comparing the images acquired one minute and 5 minutes after the injection or CO2 inhalation with the baseline, distinct changes …


Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth Dec 2022

Computational Fluid Dynamics Modeling Of Hemodialysis In Patients With An Arteriovenous Fistula, Maximilian Roth

McKelvey School of Engineering Theses & Dissertations

With the advent of arteriovenous fistula (AVF) for use in hemodialysis, the anastomosis built for such use has become a central point of the study to understand the flow and wall shear stresses in such a system since very large wall shear stresses can lead to arterial/vein rupture. Considering the commonly used creation site of an anastomosis as connecting the radial artery to the cephalic vein, a model is created to calculate the wall shear stresses across various components of the system. The model depicts a connection of the specified vein and artery bridged together allowing the increase in blood …


Evaluation Of Cellulose Nanocrystal Inks And Their Structural Characteristics For 3d Bioprinting Of Customized Scaffolds, Patrick William Kuczwara Dec 2022

Evaluation Of Cellulose Nanocrystal Inks And Their Structural Characteristics For 3d Bioprinting Of Customized Scaffolds, Patrick William Kuczwara

Graduate Theses and Dissertations

3D bioprinting of biological scaffolds requires control of the physicochemical properties of each unique structures. A promising material for control of properties is hydrogels, which can help create biomimetic scaffolds with controlled spatial arrangement of materials by integrating biological materials directly into layers during the bioprinting process. Nanocellulose offers a unique combination of properties including mechanical, biomimetic, and biocompatibility. These properties offer flexibility over the types, shapes, and applications of their printed hydrogel scaffolds, (i.e., tissue, drug, encapsulation). However, 3D bioprinting of nanocellulose-based hydrogels requires high loading percentages (i.e., >10 wt%) or chemical crosslinkers (i.e., bis(acyl)phosphane oxides (BAPO)). High solid …


Deciphering The Firing Patterns Of Hippocampal Neurons During Sharp-Wave Ripples, Kourosh Maboudi Ashmankamachali Dec 2022

Deciphering The Firing Patterns Of Hippocampal Neurons During Sharp-Wave Ripples, Kourosh Maboudi Ashmankamachali

Theses and Dissertations

The hippocampus is essential for learning and memory. Neurons in the rat hippocampus selectively fire when the animal is at specific locations - place fields - within an environment. Place fields corresponding to such place cells tile the entire environment, forming a stable spatial map supporting navigation and planning. Remarkably, the same place cells reactivate together outside of their place fields and in coincidence with sharp-wave ripples (SWRs) - dominant electrical field oscillations (150-250 Hz) in the hippocampus. These offline SWR events frequently occur during quiet wake periods in the middle of exploration and the follow-up slow-wave sleep and are …


Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz Dec 2022

Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz

Graduate Theses and Dissertations

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of …


The Influence Of Electrical Stimulation Pulse Frequency Of Macro-Sieve Electrode On Rat Sciatic Nerve Detection Threshold, Jingyuan Zhang Dec 2022

The Influence Of Electrical Stimulation Pulse Frequency Of Macro-Sieve Electrode On Rat Sciatic Nerve Detection Threshold, Jingyuan Zhang

McKelvey School of Engineering Theses & Dissertations

No abstract provided.


Integrative Physiology-Coupled Pilot-Centered Flight Simulation, Shawn C. Harrison Dec 2022

Integrative Physiology-Coupled Pilot-Centered Flight Simulation, Shawn C. Harrison

Electrical & Computer Engineering Theses & Dissertations

Maintaining the pilot’s physiological performance envelope within the limits of human capabilities may be crucial for avoiding hazardous physiological episodes in fighter aircraft that compromise safety. The main physiological episode of interest is impaired pilot respiration, better known as hypoxia caused by a high fraction of inspired oxygen (FiO2) at high altitudes and variation in accelerative gravitational forces (g-forces). Integrated into fighter aircraft is an Onboard Oxygen Generating System (OBOGS) developed to mitigate the necessity of gaseous and liquid oxygen cannisters [1]. OBOGS act as a life support in hypoxic environments by providing oxygen-rich air, thereby oxygenating the …


Development And Validation Of A Three-Dimensional Optical Imaging System For Chest Wall Deformity Measurement, Nahom Kidane Dec 2022

Development And Validation Of A Three-Dimensional Optical Imaging System For Chest Wall Deformity Measurement, Nahom Kidane

Electrical & Computer Engineering Theses & Dissertations

Congenital chest wall deformities (CWD) are malformations of the thoracic cage that become more pronounced during early adolescence. Pectus excavatum (PE) is the most common CWD, characterized by an inward depression of the sternum and adjacent costal cartilage. A cross-sectional computed tomography (CT) image is mainly used to calculate the chest thoracic indices. Physicians use the indices to quantify PE deformity, prescribe surgical or non-surgical therapies, and evaluate treatment outcomes. However, the use of CT is increasingly causing physicians to be concerned about the radiation doses administered to young patients. Furthermore, radiographic indices are an unsafe and expensive method of …


Increasing Production Of Therapeutic Mabs In Cho Cells Through Genetic Engineering, Charles Barentine Dec 2022

Increasing Production Of Therapeutic Mabs In Cho Cells Through Genetic Engineering, Charles Barentine

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Between 2014 and 2018, the global market for therapeutic monoclonal antibodies (mAbs) rose from $60 billion to $115.2 billion with a projected value of $300 billion by 2025. These molecules are used to effectively treat some of the most challenging illnesses from auto-immune diseases to cancer. While mAbs are highly valuable with potent applications, their production at scale remains an outstanding challenge. These molecules are largely produced in Chinese Hamster Ovary (CHO) cells that require highly specific conditions to produce a useful product.

Genetic engineering presents one solution to overcome productivity limits. With the advent of CRISPR (clustered regularly interspaced …


Low Resource Assay For Tracking Sars-Cov-2 In Wastewater, Julissa Van Renselaar Dec 2022

Low Resource Assay For Tracking Sars-Cov-2 In Wastewater, Julissa Van Renselaar

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Wastewater based epidemiology (WBE) allows for the tracking of nucleic acid of SARS-CoV-2 in wastewater which gives the opportunity for the public and government officials to be informed about the infectivity of the virus in a community. Advances have been made in WBE that have allowed for higher performance, lower resource use, and faster turnaround time. An adapted concentration method of spin column direct extraction has yielded a proxy virus recovery of 83%, consumable cost of $2.01 per sample, and a turnaround time of 0.33 hour/sample. Other concentration methods have lower proxy virus recoveries, comparable cost, and comparable turnaround time. …