Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 104

Full-Text Articles in Biomedical Engineering and Bioengineering

Composite Biomaterial Repair Strategy To Restore Biomechanical Function And Reduce Herniation Risk In An Ex Vivo Large Animal Model Of Intervertebral Disc Herniation With Varying Injury Severity, Warren W. Hom, Melanie Tschopp, Huizi A. Lin, Philip Nasser, Damien M. Laudier, Andrew C. Hecht, Steven B. Nicoll, James C. Iatridis May 2019

Composite Biomaterial Repair Strategy To Restore Biomechanical Function And Reduce Herniation Risk In An Ex Vivo Large Animal Model Of Intervertebral Disc Herniation With Varying Injury Severity, Warren W. Hom, Melanie Tschopp, Huizi A. Lin, Philip Nasser, Damien M. Laudier, Andrew C. Hecht, Steven B. Nicoll, James C. Iatridis

Publications and Research

Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipincrosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar ...


The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste May 2019

The Effect Of Heterobifunctional Crosslinkers On Hema Hydrogel Modulus And Toughness, Elizabeth M. Boazak, Vaughn K. Greene Jr., Debra T. Auguste

Publications and Research

The use of hydrogels in load bearing applications is often limited by insufficient toughness. 2-Hydroxyethyl methacrylate (HEMA) based hydrogels are appealing for translational work, as they are affordable and the use of HEMA is FDA approved. Furthermore, HEMA is photopolymerizable, providing spatiotemporal control over mechanical properties. We evaluated the ability of vinyl methacrylate (VM), allyl methacrylate (AM), and 3-(Acryloyloxy)-2-hydroxypropyl methacrylate (AHPM) to tune hydrogel toughness and Young’s modulus. The crosslinkers were selected due to their heterobifunctionality (vinyl and methacrylate) and similar size and structure to EGDMA, which was shown previously to increase toughness as compared to longer ...


The Modeling, Design, Fabrication, And Application Of Biosensor Based On Electric Cell-Substrate Impedance Sensing (Ecis) Technique In Environmental Monitoring, Xudong Zhang, William Wang, Sunghoon Jang Apr 2019

The Modeling, Design, Fabrication, And Application Of Biosensor Based On Electric Cell-Substrate Impedance Sensing (Ecis) Technique In Environmental Monitoring, Xudong Zhang, William Wang, Sunghoon Jang

Publications and Research

In this research, the modeling, design, fabrication, and application of ECIS sensors in environmental monitoringare studied. The ECIS sensors are able to qualify the water toxicity through measuring the cell impedance. A novel mathematical model is proposed to analyze the distribution of electric potential and current of ECIS. This mathematical model is validated by experimental data and can be used to optimize the dimension of ECIS electrodes in order to satisfy environmental monitors. The detection sensitivity of ECIS sensors is analyzed by the mathematical model and experimental data. The simulated and experimental results show that ECIS sensors with smaller radius ...


Bme 20500 Bioelectrical Circuits, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bme 20500 Bioelectrical Circuits, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 9, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 9, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 10, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 10, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 7, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 7, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 1, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 1, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 3, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 3, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 4, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 4, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 5, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 5, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 8, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 8, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 6, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 6, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Bioelectrical Circuits: Lecture 2, Jacek P. Dmochowski, Luis Cardoso Jan 2019

Bioelectrical Circuits: Lecture 2, Jacek P. Dmochowski, Luis Cardoso

Open Educational Resources

No abstract provided.


Msg-Fast: Metagenomic Shotgun Data Fast Annotation Using Microbial Gene Catalogs, Stuart M. Brown, Hao Chen, Yuhan Hao, Bobby P. Laungani, Thahmina A. Ali, Changsu Dong, Carlos Lijeron, Baekdoo Kim, Claudia Wultsch, Zhiheng Pei, Konstantinos Krampis Jan 2019

Msg-Fast: Metagenomic Shotgun Data Fast Annotation Using Microbial Gene Catalogs, Stuart M. Brown, Hao Chen, Yuhan Hao, Bobby P. Laungani, Thahmina A. Ali, Changsu Dong, Carlos Lijeron, Baekdoo Kim, Claudia Wultsch, Zhiheng Pei, Konstantinos Krampis

Publications and Research

Background: Current methods used for annotating metagenomics shotgun sequencing (MGS) data rely on a computationally intensive and low-stringency approach of mapping each read to a generic database of proteins or reference microbial genomes.

Results: We developed MGS-Fast, an analysis approach for shotgun whole-genome metagenomic data utilizing Bowtie2 DNA-DNA alignment of reads that is an alternative to using the integrated catalog of reference genes database of well-annotated genes compiled from human microbiome data. This method is rapid and provides high-stringency matches (>90% DNA sequence identity) of the metagenomics reads to genes with annotated functions. We demonstrate the use of this method ...


Modification Of Lipid Microenvironments On Solid Support Structures For Use In Transmembrane Protein Assays, William J. Houlihan Jan 2019

Modification Of Lipid Microenvironments On Solid Support Structures For Use In Transmembrane Protein Assays, William J. Houlihan

Dissertations and Theses

Gamma-Secretase (γ-secretase) is a transmembrane protease of increasing interest, which has been shown to have significant connections to both cancer and Alzheimer’s disease. γ-secretase cleaves both Notch-1, a transmembrane signaling protein, and Amyloid precursor protein (APP), a transmembrane protein whose cleavage may result in the formation of β-amyloid plaques in the brain. Notch-1 and APP are widely studied proteins that have substantial impacts on the development and proliferation of cancer and Alzheimer’s disease, respectively. Notch-1 partakes in the signaling of apoptosis in damaged and mutated cells, thus its cleavage by γ-secretase within the plasma membrane has ramifications on ...


Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong Jan 2019

Translational Modeling Of Non-Invasive Electrical Stimulation, Dennis Quangvinh Truong

Dissertations and Theses

Seminal work in the early 2000’s demonstrated the effect of low amplitude non-invasive electrical stimulation in people using neurophysiological measures (motor evoked potentials, MEPs). Clinical applications of transcranial Direct Current Stimulation (tDCS) have since proliferated, though the mechanisms are not fully understood. Efforts to refine the technique to improve results are on-going as are mechanistic studies both in vivo and in vitro. Volume conduction models are being applied to these areas of research, especially in the design and analysis of clinical montages. However, additional research on the parameterization of models remains.

In this dissertation, Finite Element Method (FEM) models ...


Controlled Migration Of Retinal Progenitor Cells Within Electro-Chemotactic Fields, Shawn Mishra Jan 2019

Controlled Migration Of Retinal Progenitor Cells Within Electro-Chemotactic Fields, Shawn Mishra

Dissertations and Theses

Vision loss in retinal degenerative diseases is overwhelmingly attributed to damage and death of retinal photoreceptor cells. Studies in mouse retina have suggested that transplantation of isolated post-natal or stem cell-derived retinal progenitor cells (RPCs) to replace apoptotic or damaged photoreceptors may be a novel approach to restore vision. Thus far, outcomes project that the amount of restored visual response depends upon the migration of transplanted cells from insertion in the sub-retinal space to the outer nuclear layer (ONL). However, transplantation efficiency is exceedingly low – ~5% cells transplanted enter the retina – directly limiting the efficacy of the treatments. Additionally, the ...


Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh Jan 2019

Neuron-Glial (Ng) Interactions: A Microfluidic Examination Of Ng Emergent Responses For Repair, Tanya Singh

Dissertations and Theses

Neuron-glia communication is crucial to the development, plasticity, and repair of the nervous system (NS). While neurons are well known to conduct electrical impulses that transfer biological information and stimuli throughout the NS, our understanding of the roles of glia continues to evolve from when the cells were largely believed to act solely for neuronal support. Recent decades of research has shown that glia can alter metabolism, conduct impulses and change phenotype for NS repair. NG interactions have, thereby, become heavily researched in varied areas of biomedical engineering, including embryogenesis, neural regeneration, growth, and intracellular synaptic activity. However, while NG ...


Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark Nov 2018

Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark

Publications and Research

Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS ...


The Application Of Electric Cell-Substrate Impedance Sensing (Ecis) Biosensors, Xudong Zhang, Sunghoon Jang Nov 2018

The Application Of Electric Cell-Substrate Impedance Sensing (Ecis) Biosensors, Xudong Zhang, Sunghoon Jang

Publications and Research

Electric cell-substrate impedance sensing (ECIS) is a label-free and non-invasive technique for analyzing the activities and morphologies of cells. The ECIS sensors are able to measure the impedance spectroscopy of cells attaching on the sensor substrates. The cell activities and morphologies influence the measure impedance directly. Traditional toxicity analysis has complicated processes compared to biosensor-based analysis. In this study, the toxicity analysis was performed with biosensor based on ECIS technique. The experimental results show that the ECIS sensor is able to quickly distinguish the toxic and non-toxic substance.


Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber Aug 2018

Shipboard Design And Fabrication Of Custom 3d-Printed Soft Robotic Manipulators For The Investigation Of Delicate Deep-Sea Organisms, Daniel M. Vogt, Kaitlyn P. Becker, Brennan T. Phillips, Moritz A. Graule, Randi D. Rotjan, Timothy M. Shank, Erik E. Cordes, Robert J. Wood, David F. Gruber

Publications and Research

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms. Soft robotics manipulators were tested down to 2224m via a Remotely-Operated Vehicle (ROV) in the Phoenix Islands Protected Area (PIPA) and facilitated the study of a diverse suite of soft-bodied and fragile marine life. Instantaneous feedback from the ROV pilots and biologists allowed for rapid re-design, such as adding ªfingernailsº ...


A Novel Multiscale Mathematical Model For Building Bone Substitute Materials For Children, Abdennasser Chekroun, Laurent Pujo-Menjouet, Jean-Philippe Berteau Jun 2018

A Novel Multiscale Mathematical Model For Building Bone Substitute Materials For Children, Abdennasser Chekroun, Laurent Pujo-Menjouet, Jean-Philippe Berteau

Publications and Research

Bone is an engineering marvel that achieves a unique combination of stiffness and toughness exceeding that of synthesized materials. In orthopedics, we are currently challenged for the child population that needs a less stiff but a tougher bone substitute than adults. Recent evidence suggests that the relationship between inter-molecular connections that involve the two main bone building blocks, TropoCollagen molecules (TC) and carbonated Hydroxyapatite (cAp), and bone macroscopic mechanical properties, stiffness and toughness, are key to building bone substitute materials for children. The goal of our study is to establish how inter-molecular connections that occur during bone mineralization are related ...


Engaging Biomedical Engineering In Health Disparities Challenges, Maribel Vazquez Mar 2018

Engaging Biomedical Engineering In Health Disparities Challenges, Maribel Vazquez

Publications and Research

Health Disparities (HD) are community-based, biomedical challenges in need of innovative contributions from Science, Technology, Engineering and Math (STEM) fields. Surprisingly, STEM professionals demonstrate a persistent lack of HD awareness and/or engagement in both research and educational activities. This project introduced Health Disparities (HD) as technical challenges to incoming undergraduates in order to elevate engineering awareness of HD. The objective was to advance STEM-based, HD literacy and outreach to young cohorts of engineers. Engineering students were introduced to HD challenges in technical and societal contexts as part of Engineering 101 courses. Findings demonstrate that student comprehension of HD challenges ...


Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez Jan 2018

Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez

Publications and Research

Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel ...


Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll Jan 2018

Thermoresponsive, Redox-Polymerized Cellulosic Hydrogels Undergo In Situ Gelation And Restore Intervertebral Disc Biomechanics Post Discectomy, Devika Varma, H. A. Lin, R. G. Long, G. T. Gold, A. C. Hecht, J. C. Iadridis, Steven B. Nicoll

Publications and Research

Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely ...


Senior Design I, Alessandra Carriero, Luis Cardoso Jan 2018

Senior Design I, Alessandra Carriero, Luis Cardoso

Open Educational Resources

No abstract provided.


Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri Jan 2018

Inhibition Of Apoptosis Exacerbates Fatigue-Damage Tendon Injuries In An In Vivo Rat Model, R. Bell, M. A. Robles-Harris, M. Anderson, D. Laudier, M. B. Schaffler, E. L. Flatow, N. Andarawis-Puri

Publications and Research

Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue-damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve ...


Review Of Emerging Approaches In Non- Or Minimally Invasive Glucose Monitoring And Their Application To Physiological Human Body Fluids, Sunghoon Jang, Chen Xu Jan 2018

Review Of Emerging Approaches In Non- Or Minimally Invasive Glucose Monitoring And Their Application To Physiological Human Body Fluids, Sunghoon Jang, Chen Xu

Publications and Research

The frequent blood glucose monitoring by the diabetics and physicians is a very essential step in the management of the diabetes because this devastating disease can lead the patients to blindness, kidney disease, nervous & circulatory system disease, limb amputations, stroke and cardiovascular disease (CVD). There have been numerous attempts to develop viable painless non- or minimally invasive blood glucose monitoring techniques over the last five decades in order to replace all existing methods of home blood glucose monitoring require drawing a blood sample by piercing the skin. This review describes the principles of two main emerging general technologies such as ...


A Gal-Ms Device To Evaluate Cell Migratory Response To Combined Galvano-Chemotactic Fields, Shawn Mishra, Maribel Vazquez Nov 2017

A Gal-Ms Device To Evaluate Cell Migratory Response To Combined Galvano-Chemotactic Fields, Shawn Mishra, Maribel Vazquez

Publications and Research

Electric fields have been studied extensively in biomedical engineering (BME) for numerous regenerative therapies. Recent studies have begun to examine the biological effects of electric fields in combination with other environmental cues, such as tissue-engineered extracellular matrices (ECM), chemical gradient profiles, and time-dependent temperature gradients. In the nervous system, cell migration driven by electrical fields, or galvanotaxis, has been most recently studied in transcranial direct stimulation (TCDS), spinal cord repair and tumor treating fields (TTF). The cell migratory response to galvano-combinatory fields, such as magnetic fields, chemical gradients, or heat shock, has only recently been explored. In the visual system ...