Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 256

Full-Text Articles in Biomedical Engineering and Bioengineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain Mar 2024

Finite Element Analysis Of The Bearing Component Of Total Ankle Replacement Implants During The Stance Phase Of Gait, Timothy S. Jain

Master's Theses

Total ankle replacement (TAR) implants are an effective option to restore the range of motion of the ankle joint for arthritic patients. An effective tool for analyzing these implants’ mechanical performance and longevity in-silico is finite element analysis (FEA). ABAQUS FEA was used to statically analyze the von Mises stress and contact pressure on the articulating surface of the bearing component in two newly installed fixed-bearing total ankle replacement implants (the Wright Medical INBONE II and the Exactech Vantage). This bearing component rotates on the talar component to induce primary ankle joint motion of plantarflexion and dorsiflexion. The stress response …


Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail Dec 2023

Borophene And Graphene For Non-Enzymatic Biosensor- Ab-Initio Study, Omar A. Ismail

Theses and Dissertations

Non-enzymatic glucose sensing holds promise to overcome limitations associated with glucose oxidase, such as oxygen dependence and short shelf life. This study explores the potential sensing capabilities of borophene and graphene through direct interaction with various compounds, including β-glucose, uric acid, ascorbic acid, fructose, and acetaminophen. Using Density Functional Theory (DFT), we calculated binding energies and the respective Density of States (DOS) for these adsorbates on both graphene and borophene surfaces. Preliminary results suggest that borophene might exhibit nearly twice the affinity for β-glucose compared to graphene. Moreover, the calculated Density of States reveals distinct distortions in the electronic states …


Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi Dec 2023

Numerical Investigation Of Subglottal Stenosis Effects On Human Voice Production, Dariush Bodaghi

Electronic Theses and Dissertations

This dissertation aimed to advance knowledge of how subglottal stenosis impacts voice production physiology. An in-house fluid-structure-acoustic interaction approach based on the hydrodynamic/acoustic splitting technique was employed. This technique was rigorously verified for simulating phonation by matching the acoustic behavior to a compressible flow solver for phonation-relevant geometries. Simulations of an idealized 2D vocal tract model demonstrated the effects of supraglottal acoustic resonance on vocal fold kinematics and glottal flow waveform. Results showed that the acoustic coupling between higher harmonics and formats generated pressure oscillations, modifying vocal fold dynamics and glottal flow rate.

A major novelty was the incorporation and …


Characterizing Tkr Biomechanics Using A Novel Muscle-Driven Joint Motion Simulator, Alexandre Galley Dec 2023

Characterizing Tkr Biomechanics Using A Novel Muscle-Driven Joint Motion Simulator, Alexandre Galley

Electronic Thesis and Dissertation Repository

Total knee replacement (TKR) is the end-stage treatment for severe cases of knee osteoarthritis (OA). Despite its success in alleviating pain and restoring mobility to the knee, patient satisfaction rates post-TKR are still lower than other common joint replacement surgeries. Knee kinematics and stability, key determinants of successful TKR, are assessed intraoperatively and tracked post-operatively in in vivo clinical studies. However, the persistently low satisfaction rates suggest that more sophisticated pre-clinical testing methods are needed to better understand the biomechanics of these implants early in their development. During pre-clinical testing of TKR implants, different joint motion simulators are used for …


Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc. Nov 2023

Computational Modeling Using A Novel Continuum Approach Coupled With Pathway-Informed Neural Networks To Optimize Dynein-Mediated Centrosome Positioning In Polarized Cells, Arkaprovo Ghosal, Padmanabhan Seshaiyar Dr., Adriana Dawes Dr., General Genomics Inc.

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins Nov 2023

Kinematic Analysis Of Gait And Deep Knee Flexion For Pre- And Post-Operative Total Knee Arthroplasty, Samantha Collins

Electronic Theses and Dissertations

Osteoarthritis (OA) is a form of arthritis that develops in the joint due to overuse and aging causing pain, discomfort, and disability. Total Knee Arthroplasty (TKA) is a surgical procedure performed when OA symptoms are severe with an estimated 600,000 patients in the United States currently receiving TKA. Studies have reported dissatisfaction of the knee for 14-39% of patients. This study collected knee kinematics before and after surgery using stereo radiography for precise measurement of gait and deep knee flexion activities. Results showed healthy knee kinematics were not restored and no significant changes could be seen from OA kinematics in …


Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi Nov 2023

Exploration Of Motion Capture System To Investigate Human Shoulder Kinematics, Ola Alsaadi

Electronic Theses and Dissertations

The glenohumeral joint (GH) is commonly conceptualized as a ball-and-socket joint [1], and its center of rotation (COR) is presumed to coincide with the geometric center of the medial-superior region of the humeral head [2]. Recent research has endorsed improvements in COR estimation through invasive and noninvasive techniques, including cadaver studies, stereophotogrammetry, and motion capture (MOCAP) systems. Despite increased interest in wearable technology within human movement analysis, the problem of COR estimation employing MOCAP systems and its validation against bi-planar fluoroscopy remains relatively unexplored.

This study employed a marker-based MOCAP system to compare the accuracy, error, and precision of three …


Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan Nov 2023

Computational Methodology For Generating Patient-Specific Soft Tissue Representations, Ahilan Anantha Krishnan

Electronic Theses and Dissertations

This dissertation focused on modeling specimen-specific soft tissue structures in the context of joint replacement surgery. The research addressed four key aspects. The first study involved developing a workflow for creating finite element models of the hip capsule to replicate its torque-rotational response. Experimental data from ten cadaveric hips were used to calibrate the models, resulting in improved accuracy and relevance for surgical planning and implant design. The second study tackled the challenge of expediting the calibration of mechanical properties of the hip capsule to match patient-specific laxities. A statistical shape function model was proposed to generate patient-specific finite element …


Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen Nov 2023

Digital Twins Of The Living Knee: From Measurements To Model, Thor Erik Andreassen

Electronic Theses and Dissertations

Modern medicine has dramatically improved the lives of many. In orthopaedics, robotic surgery has given clinicians superior accuracy when performing interventions over conventional methods. Nevertheless, while these and many other methods are available to ensure treatments are performed successfully, far fewer methods exist to predict the proper treatment option for a given person. Clinicians are forced to categorize individuals, choosing the best treatment on “average.” However, many individuals differ significantly from the “average” person, for which many of these treatments are designed. Going forward, a method of testing, evaluating, and predicting different treatment options' short- and long-term effects on an …


Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama Aug 2023

Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama

Masters Theses

Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study presents a high-resolution dataset created using the VICON motion capture system and three differently oriented 2D cameras, that can be used to train different neural networks for estimating the 2D key joint positions of the person from the 2D images or videos. The participants in the study included 25 healthy adults (17 males and 8 females) performing normal gait movements for about 2 to 3 seconds. The VICON system captured 3D ground truth data, while the three 2D cameras collected …


Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine Aug 2023

Hierarchical Based Classifcation Method Based On Fusion Ofgaussian Map Descriptors Foralzheimer Diagnosis Using T1‑Weighted Magnetic Resonance Imaging, Nourhan Zayed, Shereen E. Morsy, Inas A. Yassine

Mechanical Engineering

Alzheimer’s disease (AD) is considered one of the most spouting elderly diseases. In 2015, AD is reported the US’s sixth cause of death. Substantially, non-invasive imaging is widely employed to provide biomarkers supporting AD screening, diagnosis, and progression. In this study, Gaussian descriptors-based features are proposed to be efcient new biomarkers using Magnetic Resonance Imaging (MRI) T1-weighted images to diferentiate between Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI), and Normal controls (NC). Several Gaussian map-based features are extracted such as Gaussian shape operator, Gaussian curvature, and mean curvature. The aforementioned features are then introduced to the Support Vector Machine (SVM). …


Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire Aug 2023

Hemodynamic Assessment Of Y-Incision Aortic Root Enlargement Using Computational Simulations, Astitwa Ghimire

Electronic Theses and Dissertations

The Yang procedure is a new aortic root enlargement technique used to enlarge the aortic annulus by multiple valve sizes. The procedure prevents patient prosthesis mismatch and establishes a viable platform for future valve-in-valve implantation. This study used the Yang procedure to investigate the hemodynamics in the aortic root and bioprosthetic valve regions after aortic root enlargement. Results indicate the velocity magnitude at the sinus regions of a patient who underwent the Yang procedure was slower, indicating risks of flow stasis and thrombosis. Simulation results denote computational models can be created for optimization of surgical procedures.


A Virtual Method For Establishing Femoral Stem Position In Total Hip Arthroplasty, Samuel Mattei Aug 2023

A Virtual Method For Establishing Femoral Stem Position In Total Hip Arthroplasty, Samuel Mattei

Electronic Theses and Dissertations

Total hip arthroplasty (THA) is one of the most successful orthopedic surgeries performed, in which the hip joint is reconstructed to improve functionality and decrease pain in the joint. Despite the success of these procedures, femoral stem misalignment remains an area that influences THA success. The relationship between the femoral stem geometry and implanted femoral stem size and orientation is underreported due to limitations in the collection of radiographic data used for clinical pre-operative templating. Furthermore, the influence of anatomic measurements on the direction and size of the femoral stem are not considered due to imaging technique and difficulties associated …


Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo Aug 2023

Finite Element Modeling Of Patient-Specific Total Shoulder Arthroplasty, Ignacio Rivero Crespo

Electronic Theses and Dissertations

Total Shoulder Arthroplasty (TSA) is a surgical procedure designed to improve joint functionality by replacing the articulation between the humeral head and the glenoid fossa. Anatomic Total Shoulder Arthroplasty (aTSA) and Reverse Total Shoulder Arthroplasty (rTSA) are two types of replacement surgery to relieve pain and restore function of the shoulder. The overall goal of this study was to evaluate the effects of variation of certain patient and implant alignment parameters that may influence long-term outcomes of these surgical procedures, including kinematics, joint loads and contact mechanics. Computational models of six TSA subjects, three aTSA and three rTSA, were created …


Biomechanical Knee Joint For Exoskeleton, Gabriel Ireton Ahern, Calloway Miller, Christianna Altamura, Eric Mailes Jun 2023

Biomechanical Knee Joint For Exoskeleton, Gabriel Ireton Ahern, Calloway Miller, Christianna Altamura, Eric Mailes

Mechanical Engineering

Our senior design project consisted of designing and manufacturing a biomechanically accurate, actuated knee joint to be integrated into an exoskeleton being developed by the Lower Limb Exoskeleton Assist Project (LLEAP), a part of the EMPOWER student association at Cal Poly, San Luis Obispo. As the human knee flexes and extends throughout gait motion, the center of rotation changes. Currently marketed exoskeletons have one point of rotation, which over constrains the knee and causes misalignment between the user and the suit [1]. Our goal was to mimic natural knee joint motion by changing the center or rotation, thus reducing misalignment …


Bespoke Bicycle Enclosure, Thomas Link, Kyle Mcafee, Marc Monier, Hunter Walden Jun 2023

Bespoke Bicycle Enclosure, Thomas Link, Kyle Mcafee, Marc Monier, Hunter Walden

Mechanical Engineering

Brian Higgins is an American veteran with retinitis pigmentosa who relies on cycling for transportation. The motivation for this project is to design and manufacture a refined prototype bicycle attachment to support him while biking in the rain and cold. The attachment will serve to enclose him for optimal protection from inclement weather, while maintaining sufficient mobility for daily cycling. Mr. Higgins’ bicycle is equipped with an attached sensor system which assists his visual impairment by using an ultrasonic sensor. Therefore, the attachment cannot adversely affect the function of the sensor system. The project timeline is set at approximately 7 …


Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour Jun 2023

Fully Coupled Fluid Structure Interaction Simulation Of Bioprosthetic Heart Valves: A Numerical And Experimental Analysis, Masod Sadipour

Electronic Theses and Dissertations

Aortic stenosis impacts approximately 7% of the global population. In the past decade, the role of computational modeling has been becoming considerably important in the design of BHVs. To obtain reliable solutions in computational modeling, it is essential to consider accurate properties of bioprosthetic heart valves (BHVs), such as density and mechanical properties. Previous computational studies assumed (bovine pericardium) BP used in BHVs density was comparable to water or blood. Yet, BP is subjected to multiple treatments like fixation and anti-calcification. In Chapter 2, I measured BP density and its effect on BHV leaflet stress and strain. In the second …


Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani Jun 2023

Patient Movement Monitoring Based On Imu And Deep Learning, Mohsen Sharifi Renani

Electronic Theses and Dissertations

Osteoarthritis (OA) is the leading cause of disability among the aging population in the United States and is frequently treated by replacing deteriorated joints with metal and plastic components. Developing better quantitative measures of movement quality to track patients longitudinally in their own homes would enable personalized treatment plans and hasten the advancement of promising new interventions. Wearable sensors and machine learning used to quantify patient movement could revolutionize the diagnosis and treatment of movement disorders. The purpose of this dissertation was to overcome technical challenges associated with the use of wearable sensors, specifically Inertial Measurement Units (IMUs), as a …


Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake May 2023

Blood Flow Regulates Atherosclerosis Progression And Regression, Morgan A. Schake

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Atherosclerosis is the most prevalent pathology of cardiovascular disease with no known cure. Despite the many systemic risk factors for atherosclerosis, plaques do not form randomly in the vasculature. Instead, they form around bifurcations and the inner curvature of highly curving arterial segments that contain so-called disturbed blood flow that is low in magnitude and multidirectional over the cardiac cycle. Conversely, straight, non-bifurcated arterial segments that contain moderate-to-high and unidirectional (i.e., normal) blood flow are protected from plaque development. Thus, blood flow is a key regulator of atherosclerosis that may be able to be leveraged to develop new therapeutics. Towards …


Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson Mar 2023

Using Statistics, Computational Modelling And Artificial Intelligence Methods To Study And Strengthen The Link Between Kinematic Impacts And Mtbis, Andrew Luke Mcconnell Patterson

Electronic Thesis and Dissertation Repository

Mild traumatic brain injuries (mTBIs) are frequently occurring, yet poorly understood, injuries in sports (e.g., ice hockey) and other physical recreation activities where head impacts occur. Helmets are essential pieces of equipment used to protect participants’ heads from mTBIs. Evaluating the performance of helmets to prevent mTBIs using simulations on anatomically accurate computational head finite element models is critically important for advancing the development of safer helmets. Advancing the level of detail in, and access to, such models, and their continued validation through state-of-the-art brain imaging methods and traditional head injury assessment procedures, is also essential to improve safety. The …


Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones Nov 2022

Hypoxic Incubation Chamber, Simone Lisette Helfrich, Makenzie Nicole Jones

Master's Theses

This paper describes the design, manufacturing, and testing of a novel controllable hypoxic incubator with fully functional oxygen gas control and temperature control in a humid environment. On the current market, a majority of the few hypoxic incubators use pre-mixed gas that does not offer precise control over gas concentration. The objective for this project was to create a chamber that allows the user to set the O2 concentration to varying set points of % O2 while maintaining the chamber at a constant body temperature, CO2 level, humidity, and sterility. To start the project, multiple concepts were developed for the …


Computational Simulations Of The Effects Of Gravity On Lymphatic Transport, Huabing Li, Huajian Wei, Timothy P. Padera, James W. Baish, Lance L. Munn Oct 2022

Computational Simulations Of The Effects Of Gravity On Lymphatic Transport, Huabing Li, Huajian Wei, Timothy P. Padera, James W. Baish, Lance L. Munn

Faculty Journal Articles

Physical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow. Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been studied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobiological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either oppose or assist flow. Regularly spaced, mechanical bi-leaflet valves in the vessel enforce net positive flow as the vessel walls contract autonomously in response to calcium and nitric oxide …


Development Of A Reverse Engineered, Parameterized, And Structurally Validated Computational Model To Identify Design Parameters That Influence American Football Faceguard Performance, William Ferriell Aug 2022

Development Of A Reverse Engineered, Parameterized, And Structurally Validated Computational Model To Identify Design Parameters That Influence American Football Faceguard Performance, William Ferriell

All Dissertations

Traumatic brain injury (TBI) continues to have the greatest incidence among athletes participating in American football. The headgear design research community has focused on developing accurate computational and experimental analysis techniques to better assess the ability of headgear technology to attenuate impacts and protect athletes from TBI. Despite efforts to innovate the headgear system, minimal progress has been made to innovate the faceguard. Although the faceguard is not the primary component of the headgear system that contributes to impact attenuation, faceguard performance metrics, such as weight, structural stiffness, and visual field occlusions, have been linked to athlete safety. To improve …


Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward Jul 2022

Motion And Crosslinked Polyethylene Wear In Reverse Total Shoulder Arthroplasty, Christopher Millward

Electronic Thesis and Dissertation Repository

The reverse total shoulder arthroplasty (RTSA) has quickly grown to become the most commonly used shoulder arthroplasty design; however, reports have shown evidence of RTSA failures related to polyethylene wear and damage. Therefore, the present work investigated the wear of crosslinked polyethylene (XLPE) in environments similar to that of an in vivo RTSA. Additionally, a computational model was developed based on a previous study of the shoulder motions obtained from a selection of typical patients with RTSA. This model quantified the amount of glenohumeral motion that an RTSA may be subjected to in vivo and provided an approximate value for …


The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall Jun 2022

The Influence Of Flow Mechanotransduction On Endothelial Cells In The Lymphatic Valve Sinus, Joshua Daniel Hall

Doctoral Dissertations

Fluid flow in the cardiovascular and lymphatic systems influences the phenotype of endothelial cells that line the interior to the vessel via mechanotransduction. Geometric features in a vessel such as curvature, bifurcation, and valves promote heterogeneous fluid flow profiles, inducing a heterogeneous endothelial phenotype within a vessel region. Certain flow conditions are associated with vascular dysfunction, and diseases such as atherosclerosis preferentially develop in areas of flow disturbance. Lymphatic vessels are highly analogous to blood vessels, although lymphatic flow characteristics and its effect on lymphatic endothelial cells (LECs) via mechanotransduction have been comparatively less examined. The most significant geometric features …


Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner May 2022

Developing New Crutch Tip Design For Overall Increased Stability And Improved Movement On Different Terrains, Lauren Skinner

Honors Theses

Crutches are a mobility assistive device that are often used in various situations, such as post- surgical rehabilitation and recovery after injury. The current crutch tip design that is used on today’s crutches are often unstable and do not provide quality movement on different terrains, such as snow, ice, mud, and wet surfaces. These problems would be solved with a new tip design that could be attached to existing crutches or manufactured with the crutch itself. The team’s solution to this problem is a crutch tip with modular parts. The tip would attach to the shaft of the crutch like …


Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato May 2022

Radiomic Features To Predict Overall Survival Time For Patients With Glioblastoma Brain Tumors Based On Machine Learning And Deep Learning Methods, Lina Chato

UNLV Theses, Dissertations, Professional Papers, and Capstones

Machine Learning (ML) methods including Deep Learning (DL) Methods have been employed in the medical field to improve diagnosis process and patient’s prognosis outcomes. Glioblastoma multiforme is an extremely aggressive Glioma brain tumor that has a poor survival rate. Understanding the behavior of the Glioblastoma brain tumor is still uncertain and some factors are still unrecognized. In fact, the tumor behavior is important to decide a proper treatment plan and to improve a patient’s health. The aim of this dissertation is to develop a Computer-Aided-Diagnosis system (CADiag) based on ML/DL methods to automatically estimate the Overall Survival Time (OST) for …


Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre May 2022

Predicting The Progression Of Diabetes Mellitus Using Dynamic Plantar Pressure Parameters, Mathew Sunil Varre

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: Diabetic peripheral neuropathy is one of the common complications of type-2 diabetes mellitus (DM). Changes in the intrinsic plantar tissue coupled with repetitive mechanical loads and loss of sensation may lead to foot related complications (skin break down, ulcerations, and amputations) in persons with neuropathy if left untreated. The purpose of this dissertation was to stratify individuals with pre-diabetes, diabetes with and without neuropathy using dynamic plantar pressure parameters during walking, using machine learning algorithms.Methods: Plantar pressure data was collected from one hundred participants during walking with pressure measuring insoles fixed between the feet and thin socks. Simultaneously high-definition …