Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 410

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo Jun 2019

Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo

Theses and Dissertations

Data plenitude is the power but also the bottleneck for data-driven approaches, including neural networks. In particular, Convolutional Neural Networks (CNNs) require an abundant database of training images to achieve a desired high accuracy. Current techniques employed for boosting small datasets are data augmentation and synthetic data generation, which suffer from computational complexity and imprecision compared to original datasets. In this thesis, we intercalate prior knowledge based on the temporal relation between the images in the third dimension. Specifically, we compute the gradient of subsequent images in the dataset to remove extraneous information and highlight subtle variations between the images ...


Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield Jun 2019

Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield

Interdisciplinary Design Senior Theses

In the United States, approximately one in 4 adults have at least one chronic illness, making up approximately 84% of US Healthcare Spending. Unfortunately, 50% of patients with chronic diseases do not take their medication properly and as such spend more money trying to get better – approximately $100 billion in annual preventable costs. One solution to this issue is digital medicine as it allows for the monitoring of patient medicine consumption.

Our industry partner has developed a three-part digital medicine system with the aim of allowing patients with chronic health issues to better reach their health goals through monitoring of ...


Designing A Low-Cost Ultrasound Pulser, Andrea Huey Jun 2019

Designing A Low-Cost Ultrasound Pulser, Andrea Huey

Honors Theses

Ultrasound imaging allows for those studying living beings to see inside a subject without causing it harm. This allows for real-time images to be taken, leading to ease of observational research. However, while this technology is beneficial to those who utilize it, the devices used to create and receive ultrasound pulses can be incredibly complex, allowing for precise adjustment of the output signal and various other functions, and therefore expensive. The focus of this senior project is the design of a low-cost pulser for use with an ultrasound transducer. While it does not have all the high-level functions of the ...


Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki May 2019

Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki

Dissertations

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity ...


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson Mar 2019

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler Mar 2019

Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler

Master's Theses and Project Reports

Personal computers and portable electronics continue to rapidly advance and integrate into our lives as tools that facilitate efficient communication and interaction with the outside world. Now with a multitude of different devices available, personal computers are accessible to a wider audience than ever before. To continue to expand and reach new users, novel user interface technologies have been developed, such as touch input and gyroscopic motion, in which enhanced control fidelity can be achieved. For users with limited-to-no use of their hands, or for those who seek additional means to intuitively use and command a computer, novel sensory systems ...


Long-Term, Super-Resolution Imaging Of Amyloid Structures Using Transient Amyloid Binding Microscopy, Tianben Ding, Kevin Spehar, Jan Bieschke, Matthew D. Lew Feb 2019

Long-Term, Super-Resolution Imaging Of Amyloid Structures Using Transient Amyloid Binding Microscopy, Tianben Ding, Kevin Spehar, Jan Bieschke, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Amyloid fibrils and tangles are signatures of Alzheimer disease, but nanometer-sized aggregation intermediates are hypothesized to be the structures most toxic to neurons. The structures of these oligomers are too small to be resolved by conventional light microscopy. We have developed a simple and versatile method, called transient amyloid binding (TAB), to image amyloid structures with nanoscale resolution using amyloidophilic dyes, such as Thioflavin T, without the need for covalent labeling or immunostaining of the amyloid protein. Transient binding of ThT molecules to amyloid structures over time generates photon bursts that are used to localize single fluorophores with nanometer precision ...


Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin R. J. Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme Jan 2019

Use Of Flexible Sensor To Characterize Biomechanics Of Canine Skin, Austin R. J. Downey, Jin Yan, Eric M. Zellner, Karl H. Kraus, Iris V. Rivero, Simon Laflamme

Civil, Construction and Environmental Engineering Publications

Background: Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain. This sensor was applied to a sample of canine skin to evaluate its capacity to sense strain in the sample while loaded in a dynamic material testing machine. The measured strain of the sensor was compared with the strain measured by the ...


Investigating The Role Of Coil Designs And Anatomical Variations In Cerebellar Tms, Xiaojing Zhong, Priyam Rastogi, Yifei Wang, Erik G. Lee, David C. Jiles Jan 2019

Investigating The Role Of Coil Designs And Anatomical Variations In Cerebellar Tms, Xiaojing Zhong, Priyam Rastogi, Yifei Wang, Erik G. Lee, David C. Jiles

Electrical and Computer Engineering Publications

Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique that is used for treating various neurological disorders such as major depressive disorder. TMS has been gaining popularity in the field of neurostimulation of the cerebellum, since the cerebellum is a complex structure connected with almost the entire central nervous system and TMS has promise for non-invasively probing cerebellar function. Recent studies have discovered that the cerebellum plays an important role not only in motor planning and behavior but also in the cognitive domain. However, few studies have explored how different coil designs and anatomical variations affect the effectiveness of cerebellar ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Glioma Grading Using Structural Magnetic Resonance Imaging And Molecular Data, Syed M.S. Reza, Manar D. Samad, Zeina A. Shboul, Karra A. Jones, Khan M. Iftekharuddin Jan 2019

Glioma Grading Using Structural Magnetic Resonance Imaging And Molecular Data, Syed M.S. Reza, Manar D. Samad, Zeina A. Shboul, Karra A. Jones, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

A glioma grading method using conventional structural magnetic resonance image (MRI) and molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation analysis, and multiresolution fractal Brownian motion in structural MRI. The proposed method is evaluated using two multicenter MRI datasets: (1) the brain tumor segmentation (BRATS-2017) challenge for high-grade versus low-grade (LG) and (2) the cancer imaging archive (TCIA) repository for glioblastoma (GBM) versus LG glioma grading. The grading performance using MRI is compared with that of digital pathology (DP) images in the ...


Overview Of Sepsis And Sepsis Biomarker Detection, Souvik Kundu Jan 2019

Overview Of Sepsis And Sepsis Biomarker Detection, Souvik Kundu

Creative Components

Sepsis being a fatal physiological state due to an imbalance in the immune system caused by infection, and one of the most common cause for millions of deaths in the non-coronary intensive care unit worldwide requires special attention in its diagnostic methods and cure. Therefore an understanding of literature related to sepsis is of utmost importance. With the advent of inter-disciplinary research, the study and diagnosis of sepsis problem are not limited to the medical field, rather it requires interventions and active participation of other fields of science and technology. However, often subject matter from interdisciplinary research is expounded in ...


Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge Jan 2019

Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection, Michael D. Aldridge

Graduate Theses, Dissertations, and Problem Reports

Odor detection and identification are complex processes, and tasks that currently only animals do well. There is a pressing need for an electronic nose, or eNose, with good sensitivity, selectivity, and speed that mimics that ability. Food quality control operations, environmental sensing, occupational safety, and the defense sectors all require systems that can rapidly and reliably detect trace levels of volatile organic compounds. The goal of this work is to create a biologically inspired device which can accurately detect and identify odors at concentrations consistent with the most sensitive biological systems.

In order to mimic a natural olfactory system, we ...


Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan Jan 2019

Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan

Electronic Theses and Dissertations

Nanonization and encapsulation of cancer drug has been an effective way of making the drug injectable for EPR based passive targeted delivery. When cancer drugs are subjected to electrospray with high voltage like 30-45kV, it forms drug nanocrystal, which has same efficacy as the normal drug. UV-Vis is used to detect the presence of drug in the sample and later on, drug release pattern over the day is found through UV-Vis as well. The effect of spraying parameter on morphology of nanocrystals are investigated using Scanning Electron Microscope (SEM). On top of that, encapsulation of chemo drug into biocompatible polymer ...


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network ...


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable ...


Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage Dec 2018

Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage

Electronic Theses and Dissertations

The use of neural prostheses to improve health of paraplegics has been a prime interest of neuroscientists over the last few decades. Scientists have performed experiments with spinal cord stimulation (SCS) to enable voluntary motor function of paralyzed patients. However, the experimentation on the human spinal cord is not a trivial task. Therefore, modeling and simulation techniques play a significant role in understanding the underlying concepts and mechanics of the spinal cord stimulation. In this work, simulation and modeling techniques related to spinal cord stimulation were investigated. The initial work was intended to visualize the electric field distribution patterns in ...


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell ...


Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin Nov 2018

Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin

Graduate Theses and Dissertations

Brain Machine Interfaces (BMI) provide a communication pathway between the electrical conducting units of the brain (neurons) and external devices. BMI technology may provide improved neurological and physiological functions to patients suffering from disabilities due to damaged nervous systems. Unfortunately, microelectrodes used in Intracortical Neural Interfaces (INI), a subset of the BMI device family, have yet to demonstrate long-term in vivo performance due to material, mechanical and electrical failures. Many state-of-the-art INI devices are constructed using stacks of multiple materials, such as silicon (Si), titanium (Ti), platinum (Pt), parylene C, and polyimide. Not only must each material tolerate the biological ...


Dual-Display Laparoscopic Laser Speckle Contrast Imaging For Real-Time Surgical Assistance, Jaepyeong Cha, Corey Zheng, Lung Wai Lau Nov 2018

Dual-Display Laparoscopic Laser Speckle Contrast Imaging For Real-Time Surgical Assistance, Jaepyeong Cha, Corey Zheng, Lung Wai Lau

Pediatrics Faculty Publications

Laser speckle contrast imaging (LSCI) utilizes the speckle pattern of a laser to determine the blood flow in tissues. The current approaches for its use in a clinical setting require a camera system with a laser source on a separate optical axis making it unsuitable for minimally invasive surgery (MIS). With blood flow visualization, bowel viability, for example, can be determined. Thus, LSCI can be a valuable tool in gastrointestinal surgery. In this work, we develop the first-of-its-kind dual-display laparoscopic vision system integrating LSCI with a commercially available 10mm rigid laparoscope where the laser has the same optical axis as ...


1 - A Comprehensive Study Of Motor Imagery Eeg-Based Classification Using Computational Analysis, Justin Mccorkle, Andrew Kalaani Nov 2018

1 - A Comprehensive Study Of Motor Imagery Eeg-Based Classification Using Computational Analysis, Justin Mccorkle, Andrew Kalaani

Georgia Undergraduate Research Conference (GURC)

Brain computer interfaces (BCI) are systems that integrate a user’s neural features with robotic machines to perform tasks. BCI systems are very unstable still due to Electroencephalography (EEG) having interference from unanticipated noise. Using Independent Component Analysis (ICA), a novel variable threshold model for noise feature extraction. The de-noised EEG data is classified with a high accuracy of more than 94% when using artificial neural networks. The effectiveness of the proposed variable threshold model is validated by the significant reduction in the variance of user classification accuracy across multiple sessions. Nonetheless, based on the variance and classification, subjects are ...


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis Oct 2018

Pneumatospinning Of Collagen Microfibers From Benign Solvents, Seth Polk, Nardos Sori, Nick Thayer, Yas Maghdouri-White, Anna A. Bulysheva, Michael P. Francis

Medical Diagnostics & Translational Sciences Faculty Publications

Introduction. Current collagen fiber manufacturing methods for biomedical applications, such as electrospinning and extrusion, have had limited success in clinical translation, partially due to scalability, cost, and complexity challenges. Here we explore an alternative, simplified and scalable collagen fiber formation method, termed 'pneumatospinning,' to generate submicron collagen fibers from benign solvents. Methods and results. Clinical grade type I atelocollagen from calf corium was electrospun or pneumatospun as sheets of aligned and isotropic fibrous scaffolds. Following crosslinking with genipin, the collagen scaffolds were stable in media for over a month. Pneumatospun collagen samples were characterized using Fourier-transform infrared spectroscopy, circular dichroism ...


Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs Oct 2018

Consistent And Reproducible Cultures Of Large-Scale 3d Mammary Epithelial Structures Using An Accessible Bioprinting Platform, John A. Reid, Peter M. Mollica, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

Background: Standard three-dimensional (3D) in vitro culture techniques, such as those used for mammary epithelial cells, rely on random distribution of cells within hydrogels. Although these systems offer advantages over traditional 2D models, limitations persist owing to the lack of control over cellular placement within the hydrogel. This results in experimental inconsistencies and random organoid morphology. Robust, high-throughput experimentation requires greater standardization of 3D epithelial culture techniques.

Methods: Here, we detail the use of a 3D bioprinting platform as an investigative tool to control the 3D formation of organoids through the "self-assembly" of human mammary epithelial cells. Experimental bioprinting procedures ...


A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman Sep 2018

A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman

Electronic Thesis and Dissertation Repository

A lack of adherence to prescribed physical therapy regimens in improper healing results in poor outcomes for those affected by musculoskeletal disorders (MSDs) of the upper limb. Societal and psychological barriers to proper adherence can be addressed through the system presented in this work consisting of the following components: an ambulatory biosignal acquisition sleeve, an electromyography (EMG) based motion repetition detection algorithm, and the design of a compatible capacitive EMG acquisition module.

The biosignal acquisition sleeve was untethered, unobtrusive to motion, contained only modular components, and collected biomechanical and physiological sensor data to form full motion profiles of the following ...


Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner Sep 2018

Voltage Effects On Muscarinic Acetylcholine Receptor-Mediated Contractions Of Airway Smooth Muscle, Iurii Semenov, Robert Brenner

Bioelectrics Publications

Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised a pharmacological ...


Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller Sep 2018

Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller

Bioelectrics Publications

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43 ...


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses and Project Reports

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were ...