Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

11,011 Full-Text Articles 19,936 Authors 4,340,690 Downloads 196 Institutions

All Articles in Biomedical Engineering and Bioengineering

Faceted Search

11,011 full-text articles. Page 1 of 436.

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb 2024 American University in Cairo

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu 2024 Michigan Technological University

Aerobic Exercise Improves Depressive Symptoms In The Unilateral 6-Ohda-Lesioned Rat Model Of Parkinson's Disease, Hannah Loughlin, Jacob Jackson, Chloe Looman, Alayna Starll, Jeremy Goldman, Zhiying Shan, Chunxiu Yu

Michigan Tech Publications, Part 2

Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD. The behavioral outcomes of exercise were assessed through the rotarod test (RT), forelimb adjusting step test (FAST), sucrose consumption test (SCT), and novelty sucrose splash test (NSST). Our data revealed evident depressive symptoms in the PD animals, characterized by …


Naturify 2300, Yarina Yiwei Dai 2024 Rhode Island School of Design

Naturify 2300, Yarina Yiwei Dai

Masters Theses

In my art practice, I explore the interplay between human desires to manipulate and anthropomorphize nature, as seen in the technological augmentation of plants and living entities. This investigation delves into how this intersection, alongside empathy towards these creations, contributes to fears of uncontrollability and the risks of addiction and excessive dependence on technology.

Bioengineering and genetic modification have cultivated unprecedented developments, allowing humans to manipulate the fundamental building blocks of life. My research speculates on this technology further, modifying the genetic code of organisms and creating bioengineered wearable entities with enhanced traits or entirely new functionalities. The primary objective …


Diffuse Correlation Spectroscopy Measures Of Cerebral Blood Flow During Graded Hypoxia In Neonatal Piglets, Danielle Shoshany, Shadi Malaeb, Randolph Sinahon, Mert Deniz Polat, Meltem Izzetoglu, Patricia A. Shewokis, Kurtulus Izzetoglu 2024 Drexel University

Diffuse Correlation Spectroscopy Measures Of Cerebral Blood Flow During Graded Hypoxia In Neonatal Piglets, Danielle Shoshany, Shadi Malaeb, Randolph Sinahon, Mert Deniz Polat, Meltem Izzetoglu, Patricia A. Shewokis, Kurtulus Izzetoglu

St. Chris Research Day

No abstract provided.


Modeling Synergistic Effects Of Integrin And Tgf-Beta Signaling In Epithelial Mesenchymal Transition, Prerak Thakkar 2024 Virginia Commonwealth University

Modeling Synergistic Effects Of Integrin And Tgf-Beta Signaling In Epithelial Mesenchymal Transition, Prerak Thakkar

Biology and Medicine Through Mathematics Conference

No abstract provided.


Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony 2024 University of Texas at Tyler

Redesign Of Leg Assembly For Remote Walking Training Device To Improve Gait Kinematics, Jacob Anthony

Mechanical Engineering Theses

As modern medicine has improved, the average age of patients has increased. This has cause a growing number of patients to develop disabilities over time due to spinal cord injuries and stroke among other neurological ailments. This has led to an increased interest in developing robotic exoskeletons to help patients with neuromuscular rehabilitation. However, most exoskeletons do not accurately replicate the natural human gait kinematics due to a lack of degrees of freedom at the designed knee joint. In this thesis, the leg assembly for a robotic rehabilitation (RoboREHAB) device is redesigned to improve the gait kinematics and a reinforcement …


Self-Balancing Robot Leg, Ben Bolen 2024 Portland State University

Self-Balancing Robot Leg, Ben Bolen

Student Research Symposium

Research in the Agile and Adaptive Robotics Lab involves the creation of biomimetic robots. To this end, we developed a self-balancing robot leg actuated with braided pneumatic actuators (BPAs)—a type of pneumatic artificial muscle. These BPAs, akin to human muscles, exhibit properties such as high strength-to-weight ratio and tunable passive stiffness. An Inertial Measurement Unit (IMU) was placed on top of the tibia for feedback and the tibia and foot were connected with a hinge joint. The orientation of the ankle joint was controlled with an Arduino microcontroller sending commands to the proportional pressure valves supplying the BPAs. Leg balance …


Integrating Implantable Bci Devices Within Bci2000 Using A Unified Framework And Toolchain For In-Vivo Research, Dhruva Mehta 2024 Washington University in St. Louis

Integrating Implantable Bci Devices Within Bci2000 Using A Unified Framework And Toolchain For In-Vivo Research, Dhruva Mehta

McKelvey School of Engineering Theses & Dissertations

The field of neurotechnology research has a bright and promising future as more devices are created. However, there are still many gaps in the field as the potential for neuromodulation grows. Devices such as the Micro-Leads StimZ system and the Ripple Grapevine/Summit system help bridge that gap by allowing for a broader variety of closed-loop neuromodulation experiments to be implemented thanks to their portability and versatility. Despite these devices being on the market, however, there needs to be a method to collaborate and interact with them across multiple research institutions. BCI2000 helps to address that by creating a standardized working …


Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu 2024 Washington University in St. Louis

Evaluating Neuroimaging Modalities In The A/T/N Framework: Single And Combined Fdg-Pet And T1-Weighted Mri For Alzheimer’S Diagnosis, Peiwang Liu

McKelvey School of Engineering Theses & Dissertations

With the escalating prevalence of dementia, particularly Alzheimer's Disease (AD), the need for early and precise diagnostic techniques is rising. This study delves into the comparative efficacy of Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and T1-weighted Magnetic Resonance Imaging (MRI) in diagnosing AD, where the integration of multimodal models is becoming a trend. Leveraging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we employed linear Support Vector Machines (SVM) to assess the diagnostic potential of these modalities, both individually and in combination, within the AD continuum. Our analysis, under the A/T/N framework's 'N' category, reveals that FDG-PET consistently outperforms T1w-MRI across …


Investigating Murine Uterine Tissue Dynamics: Biomechanical And Histological Perspectives On Postpartum Involution And Scar-Induced Remodeling, Savannah Elizabeth Chatman 2024 Washington University in St. Louis

Investigating Murine Uterine Tissue Dynamics: Biomechanical And Histological Perspectives On Postpartum Involution And Scar-Induced Remodeling, Savannah Elizabeth Chatman

McKelvey School of Engineering Theses & Dissertations

During pregnancy, the uterus undergoes structural and mechanical transformations to withstand the demands of a successful delivery. In cases where vaginal birth is not feasible, a Cesarean section (c-section), which involves a transverse abdominal incision, is used to facilitate delivery of the fetus and placenta1. Following the procedure, the uterus and abdominal tissue are carefully sutured to support postpartum recovery, leading to uterine scarring at the incision site1,2. Understanding the relationship between uterine scar integrity, postpartum involution, and the biomechanics of uterine tissue is a crucial step toward predicting the risk of uterine rupture during future …


Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe 2024 University of South Dakota

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe

Honors Thesis

Without extensive vascularization, the transfer of fluid and nutrients through human tissue is limited to diffusion and weak interstitial flow. Electroosmosis, or the flow of fluid driven by an electrical field, has become a promising solution. Scientists have begun applying electricity to human tissue to promote stronger interstitial flow; however, optimization of this process has proven to be a challenge due to ohmic heating. Cells function within a small range of temperatures and exposure to voltages exceeding the threshold will cause cells to degrade and die prematurely. This research seeks to better understand and quantify the range of voltage where …


Evaluating Tissue Morphology In The Context Of Varied Initial Fabrication Conditions, Cassidy Caffin 2024 University of Arkansas, Fayetteville

Evaluating Tissue Morphology In The Context Of Varied Initial Fabrication Conditions, Cassidy Caffin

Biomedical Engineering Undergraduate Honors Theses

Cardiovascular diseases have been the leading cause of death for years. This includes myocardial infarctions (MI) where blood flow to the myocardium is restricted. This causes damage to cardiac muscle due to insufficient oxygen. There are multiple ways to treat patients following an MI with the most common involving assorted medication. However, there are limited medications that can be used for treating patients following MIs, and the FDA’s decreasing approval rate for new cardiac drugs will not dramatically improve the range of options. The lead-up to drug candidate rejection by the FDA can involve drugs exhibiting promising preliminary research that …


Dorsal Root Ganglia Neurite Outgrowth Following Traumatic Spinal Cord Injury Repair: A Review, Adrienne Vaughan 2024 University of Arkansas, Fayetteville

Dorsal Root Ganglia Neurite Outgrowth Following Traumatic Spinal Cord Injury Repair: A Review, Adrienne Vaughan

Biomedical Engineering Undergraduate Honors Theses

Traumatic spinal cord injury (tSCI) can cause partial sensorimotor deficiency or total dysfunction, rendering patients unable to perform necessary tasks and dramatically decreasing their quality of life. tSCI is a very prevalent issue. In the United States alone, there are approximately 54 new cases of SCI per one million people each year, or 18,000 new cases annually. tSCI creates a lesion gap filled with axon-inhibiting fibrotic scar tissue. Comprehensive functional recovery following traumatic spinal cord injury (tSCI) requires axonal regeneration across wound site lesions. Dorsal root ganglia (DRG) neurite outgrowth is often evaluated in PNI therapeutic research since it can …


Analyzing Diverse Student Experiences: The Intersection Of Equity, Inclusivity, And Biomedical Engineering Education Through A Clinical Observations And Needs Finding Course, Jacquelynn Horsey 2024 University of Arkansas, Fayetteville

Analyzing Diverse Student Experiences: The Intersection Of Equity, Inclusivity, And Biomedical Engineering Education Through A Clinical Observations And Needs Finding Course, Jacquelynn Horsey

Biomedical Engineering Undergraduate Honors Theses

In the field of biomedical engineering, needs identification and solution development are an important element of the design process. In our undergraduate curriculum, a course was designed to allow clinical observation and provide an opportunity for students to learn about engineering design and engage with clinicians via completing rotations in medical facilities near our campus. While this type of course is not unique, evaluating its efficacy is not simple. Given the broad range of institutional resources available- such as proximity to a medical school, or residency programs- reporting the quality of such courses within the context of such available resources …


Microwave Imaging Technique For Breast Cancer Detection, Nure Alam Chowdhury 2024 Florida Institute of Technology

Microwave Imaging Technique For Breast Cancer Detection, Nure Alam Chowdhury

Theses and Dissertations

Breast cancer is a global problem, and it is inevitable to detect cancerous cells at early stages. In recent years, microwave imaging technology has been widely applied in biomedical applications for its non-ionizing radiation. In this study, we design a micro-strip patch antenna with an inverted T-type notch in the partial ground to detect tumor cells inside the human breast. The size of the current antenna is small enough (18 mm × 21 mm × 1.6 mm) to distribute around the breast phantom. The operating frequency has been observed from 6–14 GHz with a minimum return loss of −61.18 dB …


Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood 2024 Washington University in St. Louis

Environment And Response Of 3d-Encapsulated Mesenchymal Stem Cells To Mechanical Loading, Augustus Greenwood

McKelvey School of Engineering Theses & Dissertations

This thesis explores the micromechanical environment induced when cyclically compressing hydrogels via finite element modeling and experimentally on the impact of loading on mesenchymal stem cells (MSCs) when encapsulated withing 3D hydrogel matrices. Degenerative joint diseases, characterized by cartilage degradation, present significant challenges due to cartilage's limited self-repair capacity. Innovative approaches, including stem cell-based therapies and engineered biomaterials, have emerged as promising strategies for cartilage repair and regeneration. This work specifically investigates the calibration of a bioreactor, the uniformity of load response across the hydrogel constructs via finite element modeling (FEM), and the stress response of MSCs subjected to various …


Development Of A Wearable Short-Wave Infrared Photoplethysmography Device For Detection And Monitoring Of Hemodilution During Postpartum Hemorrhage, Hannah Gruensfelder 2024 Washington University in St. Louis

Development Of A Wearable Short-Wave Infrared Photoplethysmography Device For Detection And Monitoring Of Hemodilution During Postpartum Hemorrhage, Hannah Gruensfelder

McKelvey School of Engineering Theses & Dissertations

ABSTRACT OF THE THESIS

A Thesis on the Development of a Wearable Short-Wave Infrared Photoplethysmography Device for Detection and Monitoring of Hemodilution During Postpartum Hemorrhage

by

Hannah Gruensfelder

Master of Science in Biomedical Engineering

Washington University in St. Louis, 2024

Professor Christine O’Brien, Chair

Postpartum hemorrhage (PPH), the leading cause of maternal death and morbidity, affects nearly 14 million people worldwide each year, disproportionally impacting racial minorities and people in low resource settings. A timely diagnosis of PPH is key in providing optimal patient care, as an estimated 90% of deaths due to PPH are preventable with early diagnosis and …


Modeling Of Nk Cells In Pediatric Patients With Unusually Severe Or Recurrent Hsv Using High-Dimensional Flow Cytometry, Yunran Feng 2024 Washington University in St. Louis

Modeling Of Nk Cells In Pediatric Patients With Unusually Severe Or Recurrent Hsv Using High-Dimensional Flow Cytometry, Yunran Feng

McKelvey School of Engineering Theses & Dissertations

HSV infection is broadly spread all over the world with some patients having severe and/or recurrent HSV infections. Our lab studies human Natural Killer (NK) cells, which are important in innate immune responses to viral infections and tumors. A publication in 2013 by Ornstein et al from our lab studied HSV+ pediatric patients and found some associations between severe infection and defects in NK cytolytic function. PLCG2 haploinsufficient variants found in 2 HSV patients causing PLCγ2 hypophosphorylation, and loss of cytolytic function in NK cells is a novel finding recently published by Alinger et al from our lab in 2023. …


The Role Of Voluntary Descending Control In Enhancing Motor Function Via Transcutaneous Spinal Cord Stimulation, Yoon Kim 2024 Washington University in St. Louis

The Role Of Voluntary Descending Control In Enhancing Motor Function Via Transcutaneous Spinal Cord Stimulation, Yoon Kim

McKelvey School of Engineering Theses & Dissertations

Spinal cord injury (SCI) is a life-changing event that causes lasting motor impairments. Transcutaneous spinal cord stimulation (tSCS), a non-invasive form of neuromodulation in which electrodes are placed on the skin and used to stimulate the spinal circuits via an electrical current, has demonstrated positive effects on motor function recovery in individuals who have had SCIs. However, the precise mechanism of how tSCS interacts with voluntary descending drive remains poorly understood. This study aims to investigate the role of voluntary descending control in influencing reflex responses triggered by tSCS.

Electromyography (EMG) recordings were performed in ten unimpaired individuals while they …


Novel Kinetic Description Of Real-Time Polymerase Chain Reaction Characterizes Interrelated Effects Of Sample, Master Mix, And Cycle Time, David Tafur 2024 Utah State University

Novel Kinetic Description Of Real-Time Polymerase Chain Reaction Characterizes Interrelated Effects Of Sample, Master Mix, And Cycle Time, David Tafur

All Graduate Theses and Dissertations, Fall 2023 to Present

Real-time quantitative polymerase chain reaction fluorescent curves are influenced by the quantification method, template length, primer sequence, polymerase activity, reaction conditions, and unwanted side reactions. Interpretation of these curves depends on understanding the subjacent mechanisms by which those factors can alter the curve profile, particularly on highly diluted analytes or impure samples. However, such factors are individually described today, or their interplay is not fully developed. The present work examines the effect of primer dimer formation and extension, resource competition, template reannealing, and polymerase thermodegradation, in addition to novel descriptions of polymerase competitive inhibition, extended primer amplification, and the probability …


Digital Commons powered by bepress