Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 355

Full-Text Articles in Biomedical Engineering and Bioengineering

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang Jan 2024

Synergistic Effects Of Nanosecond Pulsed Plasma And Electric Field On Inactivation Of Pancreatic Cancer Cells In Vitro, Edwin A. Oshin, Zobia Minhas, Ruben M. L. Colunga Biancatelli, John D. Catravas, Richard Heller, Siqi Guo, Chunqi Jiang

Bioelectrics Publications

Nanosecond pulsed atmospheric pressure plasma jets (ns-APPJs) produce reactive plasma species, including charged particles and reactive oxygen and nitrogen species (RONS), which can induce oxidative stress in biological cells. Nanosecond pulsed electric field (nsPEF) has also been found to cause permeabilization of cell membranes and induce apoptosis or cell death. Combining the treatment of ns-APPJ and nsPEF may enhance the effectiveness of cancer cell inactivation with only moderate doses of both treatments. Employing ns-APPJ powered by 9 kV, 200 ns pulses at 2 kHz and 60-nsPEF of 50 kV/cm at 1 Hz, the synergistic effects on pancreatic cancer cells (Pan02) …


Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori Jan 2024

Nanosecond Pulsed Electric Fields Increase Antibiotic Susceptibility In Methicillin-Resistant Staphylococcus Aureus, Alexandra E. Chittams-Miles, Areej Malik, Erin B. Purcell, Claudia Muratori

Bioelectrics Publications

Staphylococcus aureus is the leading cause of skin and soft-tissue infections (SSTIs). SSTIs caused by bacteria resistant to antimicrobials, such as methicillin-resistant S. aureus (MRSA), are increasing in incidence and have led to higher rates of hospitalization. In this study, we measured MRSA inactivation by nanosecond pulsed electric fields (nsPEF), a promising new cell ablation technology. Our results show that treatment with 120 pulses of 600 ns duration (28 kV/cm, 1 Hz), caused modest inactivation, indicating cellular damage. We anticipated that the perturbation created by nsPEF could increase antibiotic efficacy if nsPEF were applied as a co-treatment. To test this …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo Jan 2024

Identification And Characterization Of Two Novel Kcnh2 Mutations Contributing To Long Qt Syndrome, Anthony Owusu-Mensah, Jacqueline Treat, Joyce Bernardi, Ryan Pfeiffer, Robert Goodrow, Bright Tsevi, Victoria Lam, Michel Audette, Jonathan M. Cordeiro, Makarand Deo

Electrical & Computer Engineering Faculty Publications

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the …


Plasma Protein Signatures Of Adult Asthma, Gordon J. Smilnak, Yura Lee, Abhijnan Chattopadhyay, Annah B. Wyss, Julie D. White, Sinjini Sikdar, Jianping Jin, Andrew J. Grant, Alison A. Motsinger-Reif, Jian-Liang Li, Mikyeong Lee, Bing Yu, Stephanie J. London Jan 2024

Plasma Protein Signatures Of Adult Asthma, Gordon J. Smilnak, Yura Lee, Abhijnan Chattopadhyay, Annah B. Wyss, Julie D. White, Sinjini Sikdar, Jianping Jin, Andrew J. Grant, Alison A. Motsinger-Reif, Jian-Liang Li, Mikyeong Lee, Bing Yu, Stephanie J. London

Mathematics & Statistics Faculty Publications

Background: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma.

Methods: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with …


Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper Jan 2024

Quantification Of Antiviral Drug Tenofovir (Tfv) By Surface-Enhanced Raman Spectroscopy (Sers) Using Cumulative Distribution Functions (Cdfs), Marguerite R. Butler, Jana Hrncirova, Meredith Clark, Sucharita Dutta, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, …


Investigation Of Nanosecond Pulsed Electric Fields (Nspef) Induced Anti-Cancer Mechanism And Enhanced B16f10 Melanoma Cancer Treatment, Kamal Asadipour Oct 2023

Investigation Of Nanosecond Pulsed Electric Fields (Nspef) Induced Anti-Cancer Mechanism And Enhanced B16f10 Melanoma Cancer Treatment, Kamal Asadipour

Biomedical Engineering Theses & Dissertations

The use of nanosecond pulsed electric fields (nsPEF) has emerged as a promising area of research with vast implications across various scientific disciplines. The ability to generate ultra-short, high-voltage electric pulses has paved the way for numerous applications, ranging from fundamental investigations of biological phenomena to the development of innovative medical therapies. The aim of this thesis is to highlight the importance of nsPEF in two critical areas: 1) Understanding the impact of subtle postpulse waveforms through a comprehensive analysis of two common pulse generators and 2) using this knowledge to advance melanoma treatment by enhancing the therapeutic effect of …


Cheiloscopy Examination And Classification Of Lip Prints With And Without Parafunctional Oral Habits: A Cross-Sectional Observation Study, Emily Smith Regan Oct 2023

Cheiloscopy Examination And Classification Of Lip Prints With And Without Parafunctional Oral Habits: A Cross-Sectional Observation Study, Emily Smith Regan

Dental Hygiene Theses & Dissertations

Problem: Lip prints are unique and have potential for use as a human identifier. The purpose of this study was to observe possible cheiloscopy differences of individuals with and without parafunctional oral habits. Additionally, inter-rater reliability (IRR) of lip print examiners was observed. Methods: This IRB approved blinded cross-sectional observational study collected lip prints from sixty-six individuals using lipstick and adhesive tape to transfer lip prints to white bond paper for viewing purposes. Each set of included lip prints was divided into quadrants and dichotomized as those with or without an oral parafunctional habit. Each quadrant sample was manually analyzed …


Ultrasensitive Tapered Optical Fiber Refractive Index Glucose Sensor, Erem Ujah Aug 2023

Ultrasensitive Tapered Optical Fiber Refractive Index Glucose Sensor, Erem Ujah

Biomedical Engineering Theses & Dissertations

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate extremely sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5–45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea Jul 2023

A Dynamical Systems Approach To Characterizing Brain–Body Interactions During Movement: Challenges, Interpretations, And Recommendations, Derek C. Monroe, Nathaniel T. Berry, Peter C. Fino, Christopher K. Rhea

Rehabilitation Sciences Faculty Publications

Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’ activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a …


Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov Jun 2023

Control Of The Electroporation Efficiency Of Nanosecond Pulses By Swinging The Electric Field Vector Direction, Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli, Andrei G. Pakhomov

Bioelectrics Publications

Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing …


Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego May 2023

Wearable Sensor Gait Analysis For Fall Detection Using Deep Learning Methods, Haben Girmay Yhdego

Electrical & Computer Engineering Theses & Dissertations

World Health Organization (WHO) data show that around 684,000 people die from falls yearly, making it the second-highest mortality rate after traffic accidents [1]. Early detection of falls, followed by pneumatic protection, is one of the most effective means of ensuring the safety of the elderly. In light of the recent widespread adoption of wearable sensors, it has become increasingly critical that fall detection models are developed that can effectively process large and sequential sensor signal data. Several researchers have recently developed fall detection algorithms based on wearable sensor data. However, real-time fall detection remains challenging because of the wide …


Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter May 2023

Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter

Biomedical Engineering Theses & Dissertations

Pulsed power treatment has been used to induce regulated cell death (RCD) in cells or ablate tumors in animals. A subset of pulsed power as electroporation with high voltage and pulse duration of milliseconds is used for biomedical treatment to induce pores in the plasma membrane of cells. Nanosecond Pulsed Electric Fields (nsPEFs)– an extension of electroporation, uses waveforms with pulse durations on the order of 10-900 nanoseconds. nsPEF treatment has demonstrated intracellular effects for potential biomedical applications. In this work, nsPEF treatment is used to demonstrate changes that affect viability, plasma membrane permeability ROS (Reactive Oxygen Species) in the …


Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso May 2023

Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso

Biomedical Engineering Theses & Dissertations

The implementation of inertial measurement units (IMU) in the biomechanical field has become increasingly popular due to their robustness, simplicity, accuracy, and the ability to move research out of a lab and into the real world. In this study, the MetaMotion IMU sensors are assessed for validity against a dynamometer and the Vicon motion capture system. Both systems have proven their measuring accuracies in the biomechanics world and are used as the truth source for this validation study. In the first part of this study, the sensors are assessed for various common sensor errors. Individual sensor components of the IMU, …


Enhancement Of Deep Learning Protein Structure Prediction, Ruoming Shen Apr 2023

Enhancement Of Deep Learning Protein Structure Prediction, Ruoming Shen

Modeling, Simulation and Visualization Student Capstone Conference

Protein modeling is a rapidly expanding field with valuable applications in the pharmaceutical industry. Accurate protein structure prediction facilitates drug design, as extensive knowledge about the atomic structure of a given protein enables scientists to target that protein in the human body. However, protein structure identification in certain types of protein images remains challenging, with medium resolution cryogenic electron microscopy (cryo-EM) protein density maps particularly difficult to analyze. Recent advancements in computational methods, namely deep learning, have improved protein modeling. To maximize its accuracy, a deep learning model requires copious amounts of up-to-date training data.

This project explores DeepSSETracer, a …


Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann Jan 2023

Marineepi: A Gui-Based Matlab Toolbox To Simulate Marine Pathogen Transmission, Gorka Bidegain, Tal Ben-Horin, Eric N. Powell, John M. Klinck, Eileen E. Hofmann

CCPO Publications

The Graphical User Interface (GUI) MarineEpi is presented as a Matlab toolbox for easily (i) constructing disease transmission models for different marine host-pathogen systems, (ii) running simulations by specifying initial conditions and model parameters, and (iii) interpreting the resulting time series of the host and pathogen population dynamics. MarineEpi users can generate models for systems in which pathogen transmission occurs through contact with infected individuals (SI), contact with dead infected individuals (SID), contact with environmental pathogens released by infected individuals (SIP), and contact with environmental pathogens released by dead infected individuals (SIPD). MarineEpi is a freely available GUI that provides …


The Effects Of Dental Hygiene Instrument Handles On Muscle Activity Production, Jessica R. Suedbeck, Daniel Russell, Cortney Armitano Lago, Emily A. Ludwig Jan 2023

The Effects Of Dental Hygiene Instrument Handles On Muscle Activity Production, Jessica R. Suedbeck, Daniel Russell, Cortney Armitano Lago, Emily A. Ludwig

Dental Hygiene Faculty Publications

Purpose The objective of this study was to compare the effects of ten commercially available instrument handle designs’ mass and diameter on forearm muscle activity during a simulated periodontal scaling experience.

Methods A convenience sample of 25 registered dental hygienists were recruited for this IRB-approved study. Ten commercially available instruments were categorized into four groups based on their masses and diameters: large diameter/light mass, small diameter/light mass, large diameter/heavy mass, and small diameter/heavy mass. Participants were randomized to four instruments with one from each group. Participants scaled with each instrument in a simulated oral environment while muscle activity was collected …


Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov Jan 2023

Pulsed Electric Field Ablation Of Esophageal Malignancies And Mitigating Damage To Smooth Muscle: An In Vitro Study, Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Andrei G. Pakhomov

Bioelectrics Publications

Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns–10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15–20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30–40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them …


Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood Jan 2023

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood

Bioelectrics Publications

Nanodiamonds (ND) have attracted significant interest for their use in several biomedical applications. These applications can be very useful if the safety and compatibility of ND are proven. We assessed the effects of ND (100 nm, Carboxylated) on primary macrophages and a macrophage-like cell line and found that these particles are not toxic to these cells at lower concentrations but may interfere with cell functions and differentiation. Internalization of ND by these cells in a time- and dose-dependent manner was mostly via phagocytosis and clathrin-dependent endocytosis and localized to the cytoplasm but not into the nucleus. No significant induction of …


Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao Jan 2023

Ultra-Low Intensity Post-Pulse Affects Cellular Responses Caused By Nanosecond Pulsed Electric Fields, Kamal Asadipour, Carol Zhou, Vincent Yi, Stephen J. Beebe, Shu Xiao

Electrical & Computer Engineering Faculty Publications

High-intensity nanosecond pulse electric fields (nsPEF) can preferentially induce various effects, most notably regulated cell death and tumor elimination. These effects have almost exclusively been shown to be associated with nsPEF waveforms defined by pulse duration, rise time, amplitude (electric field), and pulse number. Other factors, such as low-intensity post-pulse waveform, have been completely overlooked. In this study, we show that post-pulse waveforms can alter the cell responses produced by the primary pulse waveform and can even elicit unique cellular responses, despite the primary pulse waveform being nearly identical. We employed two commonly used pulse generator designs, namely the Blumlein …


Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes, R. C. Hervé, Michael G. Kong, Sudhir Bhatt, Hai-Lan Chen, E. E. Comoy, J-P. Deslys, T. J. Secker, C. W. Keevil Jan 2023

Evaluation Of Cold Atmospheric Plasma For The Decontamination Of Flexible Endoscopes, R. C. Hervé, Michael G. Kong, Sudhir Bhatt, Hai-Lan Chen, E. E. Comoy, J-P. Deslys, T. J. Secker, C. W. Keevil

Bioelectrics Publications

Background: Despite adherence to standard protocols, residues including live microorganisms may remain on the various surfaces of reprocessed flexible endoscopes. Prions are infectious proteins notoriously difficult to eliminate.

Aim: We tested the potential of cold atmospheric plasma (CAP) for the decontamination of flexible endoscope various surfaces, measuring total proteins and prion-residual infectivity as an indicator of efficacy.

Methods: New PTFE endoscope channels and metal test surfaces spiked with test soil or prion-infected tissues were treated using different CAP-generating prototypes. Surfaces were then examined for the presence of residues using very sensitive fluorescence epi-microscopy. Prion residual infectivity was determined using the …


Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller Jan 2023

Editorial: Pulsed Electric Field Based Technologies For Oncology Applications, Siqi Guo, Gregor Sersa, Richard Heller

Bioelectrics Publications

No abstract provided.


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium, John S. Lazo, Ruben M.L. Colunga-Biancatelli, Pavel A. Solopov, John D. Catravas Jan 2023

An Acute Respiratory Distress Syndrome Drug Development Collaboration Stimulated By The Virginia Drug Discovery Consortium, John S. Lazo, Ruben M.L. Colunga-Biancatelli, Pavel A. Solopov, John D. Catravas

Bioelectrics Publications

The genesis of most older medicinal agents has generally been empirical. During the past one and a half centuries, at least in the Western countries, discovering and developing drugs has been primarily the domain of pharmaceutical companies largely built upon concepts emerging from organic chemistry. Public sector funding for the discovery of new therapeutics has more recently stimulated local, national, and international groups to band together and focus on new human disease targets and novel treatment approaches. This Perspective describes one contemporary example of a newly formed collaboration that was simulated by a regional drug discovery consortium. University of Virginia, …


Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli Jan 2023

Extracellular Vesticles In Acute Respiratory Distress Syndrome: Understanding Protective And Harmful Signaling For The Development Of New Therapeutics, Matthew Bavuso, Noel Miller, Joshua M. Sill, Anca Dobrian, Ruben M. L. Colunga Biancatelli

Bioelectrics Publications

Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more …


On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang Jan 2023

On The Chronological Understanding Of The Homogeneous Dielectric Barrier Discharge, Xinpei Lu, Zhi Fang, Dong Dai, Tao Shao, Feng Liu, Cheng Zhang, Dawei Liu, Lanlan Nie, Chunqi Jiang

Bioelectrics Publications

Dielectric barrier discharges (DBD) are widely utilised non-equilibrium atmospheric pressure plasmas with a diverse range of applications, such as material processing, surface treatment, light sources, pollution control, and medicine. Over the course of several decades, extensive research has been dedicated to the generation of homogeneous DBD (H-DBD), focussing on understanding the transition from H-DBD to filamentary DBD and exploring strategies to create and sustain H-DBD. This paper first discusses the influence of various parameters on DBD, including gas flow, dielectric material, surface conductivity, and mesh electrode. Secondly, a chronological literature review is presented, highlighting the development of H-DBD and the …


Evaluating Human Eye Features For Objective Measure Of Working Memory Capacity, Yasasi Abeysinghe, Enkelejda Kasneci (Ed.), Frederick Shic (Ed.), Mohamed Khamis (Ed.) Jan 2023

Evaluating Human Eye Features For Objective Measure Of Working Memory Capacity, Yasasi Abeysinghe, Enkelejda Kasneci (Ed.), Frederick Shic (Ed.), Mohamed Khamis (Ed.)

Computer Science Faculty Publications

Eye tracking measures can provide means to understand the underlying development of human working memory. In this study, we propose to develop machine learning algorithms to find an objective relationship between human eye movements via oculomotor plant and their working memory capacity, which determines subjective cognitive load. Here we evaluate oculomotor plant features extracted from saccadic eye movements, traditional positional gaze metrics, and advanced eye metrics such as ambient/focal coefficient , gaze transition entropy, low/high index of pupillary activity (LHIPA), and real-time index of pupillary activity (RIPA). This paper outlines the proposed approach of evaluating eye movements for obtaining an …


A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu Jan 2023

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyang Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu

Computer Science Faculty Publications

Background

Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.

Methods

Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate …