Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 503

Full-Text Articles in Biomedical Engineering and Bioengineering

Design And Evaluation Of A 3d Printed Filar Micrometer, Emily M. Rull Dec 2018

Design And Evaluation Of A 3d Printed Filar Micrometer, Emily M. Rull

ELAIA

Background Double stars are celestial objects that allow for calculating the mass of stars by assessing their orbits. Stellar mass affects every current model of stellar evolution, but the most accurate double star orbits can take decades to record. Due to the long-term nature of such observations and lack of groundbreaking research in double star studies, professional astronomers are no longer focused on making these measurements, so amateur astronomers can pick up where professionals have left off. Amateurs can only do this if they can get the equipment that they need at prices they can afford. A personally-manufactured filar micrometer ...


Effect Of Strong Electrolyte Containing Gelling Aids On The Sol-Gel Transition Temperature Of Hypromellose 2910, Elnaz Sadeghi Dec 2018

Effect Of Strong Electrolyte Containing Gelling Aids On The Sol-Gel Transition Temperature Of Hypromellose 2910, Elnaz Sadeghi

Biomedical Engineering ETDs

Hypromellose, or hydroxypropyl methylcellulose (HPMC) - has been widely used for biomedical and pharmaceutical applications due to its advantages, including that it is modifiable in terms of viscosity, and it has the ability to form thermally reversible hydrogels. The thermal gelation temperature (TGel) of a given HPMC solution strongly depends on its characteristic grade and the solution concentration. Applying certain additives can modify the TGel even further; depending on their nature and concentration. With the addition of said additives, a lower or higher TGel can be obtained. For example, the addition of sodium chloride (NaCl) reduces the T ...


Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush Dec 2018

Chemically Modified Monolayer Surfaces Influence Valvular Interstitial Cell Attachment And Differentiation For Heart Valve Tissue Engineering, Matthew N. Rush

Nanoscience and Microsystems ETDs

As a cell mediated-process, valvular heart disease (VHD) results in significant morbidity and mortality world-wide. In the US alone, valvular heart disease VHD is estimated to affect 2.5% of the population with a disproportionate impact on an increasing elderly populous. It is well understood that the primary driver for valvular calcification is the differentiation of valvular interstitial cells (VICs) into an osteoblastic-like phenotype. However, the factors leading to the onset of osteoblastic-like VICs (obVICs) and resulting calcification are not fully understood and a more complete characterization of VIC differentiation and phenotypic change is required before treatment of valve disease ...


Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern Dec 2018

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern

Arts & Sciences Electronic Theses and Dissertations

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to target and evaluate different biological processes occurring in the body. Tailoring medicine to the individual allows for higher quality of care with better diagnosis and treatment and is a key purpose for advancing research into developing new platforms for PET imaging agents. A PET nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the long half-life of 3.27 days and low positron energy of 89Zr.

In this work, we developed a production method for 89Zr using Y sputtered coins ...


Biodegradable And Biocompatible Silk Fibroin For Optical Applications, Corey Bryce Malinowski Dec 2018

Biodegradable And Biocompatible Silk Fibroin For Optical Applications, Corey Bryce Malinowski

UNLV Theses, Dissertations, Professional Papers, and Capstones

This study presents nanopatterned silk fibroin films that were fabricated using soft lithography and nanoimprinting to replicate patterns from diffraction gratings. These film’s optics were analyzed based on their light scattering potential as well as their transmittance and transmission haze using a laser light, spectrometer, and UV-Vis spectrophotometer, respectively. The patterned fibroin films all displayed similar light scattering patterns to their master patterns with some transmission haze. When using the spectrometer to measure samples, those made without any nanostructure displayed transmission of 90% and over, while those with patterns depended on the structure used. The denser a structure, like ...


Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra Dec 2018

Manganese-Enhanced Magnetic Resonance Imaging: Overview And Central Nervous System Applications With A Focus On Neurodegeneration, Ryan A. Cloyd, Shon A. Koren, Jose F. Abisambra

Physiology Faculty Publications

Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and ...


How Crosslinking Mechanisms Of Methacrylated Gellan Gum Hydrogels Alter Macrophage Phenotype, Zhuqing Li, Kaitlin M. Bratlie Dec 2018

How Crosslinking Mechanisms Of Methacrylated Gellan Gum Hydrogels Alter Macrophage Phenotype, Zhuqing Li, Kaitlin M. Bratlie

Materials Science and Engineering Publications

In tissue engineering scaffolds, macrophages play a critical role in determining the host response to implanted biomaterials. Macrophage phenotype is dynamic throughout the host response, and a balance of phenotypes is essential for timely progression from injury to proper wound healing. Therefore, it is important to predict how materials will modulate the response of macrophages. In this study, we investigated the effect of methacrylated gellan gum hydrogels on macrophage phenotype and proliferation with the ultimate goal of improving rational design of biomedical implants. Naïve, along with classically and alternatively activated RAW 264.7 macrophages were seeded on methacrylated gellan gum ...


Morphological Features Of Dysplastic Progression In Epithelium: Quantification Of Cytological, Microendoscopic, And Second Harmonic Generation Images, Sandra Patricia Gordon Dec 2018

Morphological Features Of Dysplastic Progression In Epithelium: Quantification Of Cytological, Microendoscopic, And Second Harmonic Generation Images, Sandra Patricia Gordon

Theses and Dissertations

Advances in imaging technology have led to a variety of available clinical and investigational systems. In this collection of studies, we tested the relevance of morphological image feature quantification on several imaging systems and epithelial tissues. Quantification carries the benefit of creating numerical baselines and thresholds of healthy and abnormal tissues, to potentially aid clinicians in determining a diagnosis, as well as providing researchers with standardized, unbiased results for future dissemination and comparison.

Morphological image features in proflavine stained oral cells were compared qualitatively to traditional Giemsa stained cells, and then we quantified the nuclear to cytoplasm ratio. We determined ...


Numerical Simulation And Optimization Of Blalock-Taussig Shunt, Thomas Hess, Ramesh K. Agarwal Dec 2018

Numerical Simulation And Optimization Of Blalock-Taussig Shunt, Thomas Hess, Ramesh K. Agarwal

Engineering and Applied Science Theses & Dissertations

The goal of this study is to create an optimized Blalock-Taussig shunt used to temporarily repair pulmonary vascular blockages allowing a child time to grow so a more permanent surgical repair of the heart and vasculature can be performed. Blalock-Taussig or BT shunts are a surgical procedure performed on infants suffering from cyanosis or “Blue Baby Syndrome.” A BT shunt is an artificial vessel placed between the right ventricle and the pulmonary artery to increase blood flow in the lung and blood oxygen saturation levels. In a study of 96 patients with currently in use modified BT shunts, 32 patients ...


Acetylation Profiles Of Histone And Non-Histone Proteins In Breast Cancer, Alla Karpova Dec 2018

Acetylation Profiles Of Histone And Non-Histone Proteins In Breast Cancer, Alla Karpova

Engineering and Applied Science Theses & Dissertations

This study evaluates the impact of protein acetylation on breast cancer gene expression and the regulation of metabolism. Acetylation is the second abundant post-translational modification after phosphorylation, regulating protein activity and function. The alterations in acetylation of both histone and non-histone proteins is known to be related to many human diseases, including cancer. Acetylation and deacetylation of histones is closely associated with the regulation of gene expression, while acetylation of non-histone proteins may have a broad effect on major cellular processes, such as proliferation, metabolism, cell cycle and apoptosis, imbalanced regulation of which is essential for cancer development. Therefore, it ...


Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage Dec 2018

Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage

Electronic Theses and Dissertations

The use of neural prostheses to improve health of paraplegics has been a prime interest of neuroscientists over the last few decades. Scientists have performed experiments with spinal cord stimulation (SCS) to enable voluntary motor function of paralyzed patients. However, the experimentation on the human spinal cord is not a trivial task. Therefore, modeling and simulation techniques play a significant role in understanding the underlying concepts and mechanics of the spinal cord stimulation. In this work, simulation and modeling techniques related to spinal cord stimulation were investigated. The initial work was intended to visualize the electric field distribution patterns in ...


Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses and Project Reports

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip ...


Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell ...


Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz Dec 2018

Assessing Biofiltration Without Ozonation For Removal Of Trihalomethane Precursors In Drinking Water At The Beaver Water District Drinking Water Treatment Plant, Sana Ajaz

Theses and Dissertations

Biofiltration without pre-ozonation has the capability to remove natural organic matter (NOM) fractions that serve as precursors of disinfection byproducts (DBPs), which include the four regulated trihalomethanes (THMs) and dichloroacetonitrile (DCAN). Rapid small-scale column tests (RSSCTs) and Pilot Plant filters operated at empty-bed contact times (EBCTs) of 4, 8, and 16 minutes were used to evaluate the performance of nutrient-amended (free ammonia and phosphorus) biofiltration for THM and DCAN precursor removal, as measured using formation potential (FP) tests. NOM surrogates – which include dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA254) and fluorescence-PARAFAC components – were measured weekly throughout the 30-week study ...


Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr Dec 2018

Production And Biocompatibility Of Spider Silk Proteins In Goat Milk, Richard E. Decker Jr

All Graduate Theses and Dissertations

Due to its strength, flexibility, and biocompatibility, spider silk is a highly appealing material for applications in the medical field. Unfortunately, natural spider silk is difficult to obtain in large quantities because spiders are territorial and cannibalistic, making them impractical to farm. Synthetic spider silk proteins produced by transgenic hosts such as bacteria and goats have made it possible to obtain the quantities of spider silk needed to study it more fully and to investigate its potential uses. The spider silk proteins produced in our laboratory do not have an optimal purification method to remove all of the non-biocompatible contaminants ...


Identification And Engineering Of Nonribosomal Peptide Biosynthetic Systems, Fuchao Xu Dec 2018

Identification And Engineering Of Nonribosomal Peptide Biosynthetic Systems, Fuchao Xu

All Graduate Theses and Dissertations

This research focuses on the understanding and engineering of nonribosomal peptide biosynthetic pathways in Streptomyces coelicolor CH999, Escherichia coli BAP1 and Saccharomyces cerevisiae BJ5464-NpgA. The biosynthetic systems of indigoidine from bacteria and beauvericin/bassianolide from fungi were studied in this research. The production of these valuble products was significantly increased by enhancing their synthetic pathway with metabolic engineering approaches.

Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. Indigo is a dark blue crystalline powder and ...


Dynamic Balance Measurement And Quantitative Assessment Using Wearable Plantar-Pressure Insoles In A Pose-Sensed Virtual Environment, Cunguang Lou, Chenyao Pang, Congrui Jing, Shuo Wang, Xufeng He, Xiaoguang Liu, Lei Huang, Feng Lin, Xiuling Liu, Hongrui Wang Nov 2018

Dynamic Balance Measurement And Quantitative Assessment Using Wearable Plantar-Pressure Insoles In A Pose-Sensed Virtual Environment, Cunguang Lou, Chenyao Pang, Congrui Jing, Shuo Wang, Xufeng He, Xiaoguang Liu, Lei Huang, Feng Lin, Xiuling Liu, Hongrui Wang

Open Access Articles

The center of plantar pressure (COP) reflects the dynamic balance of subjects to a certain extent. In this study, wearable pressure insoles are designed, body pose measure is detected by the Kinect sensor, and a balance evaluation system is formulated. With the designed games for the interactive actions, the Kinect sensor reads the skeletal poses to judge whether the desired action is performed, and the pressure insoles simultaneously collect the plantar pressure data. The COP displacement and its speed are calculated to determine the body sway and the ability of balance control. Significant differences in the dispersion of the COP ...


Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark Nov 2018

Increased Excitability Induced In The Primary Motor Cortex By Transcranial Ultrasound Stimulation, Benjamin C. Gibson, Joseph L. Sanguinetti, Bashar W. Badran, Alfred B. Yu, Evan P. Klein, Christopher C. Abbott, Jeffrey T. Hansberger, Vincent P. Clark

Publications and Research

Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability and neuroplasticity for a variety of research and clinical applications. The effects of tUS on cortical excitability are still unclear, and further complications arise from the wide parameter space offered by various types of devices, transducer arrangements, and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly available systems that may be useful for tUS. However, the feasibility of modifying brain activity with diagnostic tUS ...


Effects Of Age, Race, And Ethnicity On The Optic Nerve And Peripapillary Region Using Spectral-Domain Oct 3d Volume Scans, Linda Yi-Chieh Poon, Hussein Antar, Edem Tsikata, Rong Guo, Georgia Papadogeorgou, Madeline Freeman, Ziad Khoueir, Ramon Lee, Eric Shieh, Huseyin Simavli, Christian John Que, Johannes F. De Boer, Teresa C. Chen Nov 2018

Effects Of Age, Race, And Ethnicity On The Optic Nerve And Peripapillary Region Using Spectral-Domain Oct 3d Volume Scans, Linda Yi-Chieh Poon, Hussein Antar, Edem Tsikata, Rong Guo, Georgia Papadogeorgou, Madeline Freeman, Ziad Khoueir, Ramon Lee, Eric Shieh, Huseyin Simavli, Christian John Que, Johannes F. De Boer, Teresa C. Chen

Open Access Articles

Purpose: To evaluate the effects of age, race, and ethnicity on the optic nerve and peripapillary retina using spectral-domain optical coherence tomography (SD-OCT) three-dimensional (3D) volume scans in normal subjects.

Methods: This is a cross-sectional study performed at a single institution in Boston. All patients received retinal nerve fiber layer (RNFL) scans and an optic nerve 3D volume scan. The SD-OCT software calculated peripapillary RNFL thickness, retinal thickness (RT), and retinal volume (RV). Custom-designed software calculated neuroretinal rim minimum distance band (MDB) thickness and area.

Results: There were 272 normal subjects, including 175 whites, 40 blacks, 40 Asians, and 17 ...


Tibiotalar Arthrodesis: Development Of A Novel Jig And Alignment Guide, Adam Mathew Ropchan Nov 2018

Tibiotalar Arthrodesis: Development Of A Novel Jig And Alignment Guide, Adam Mathew Ropchan

Electronic Thesis and Dissertation Repository

Tibiotalar arthrodesis is a surgical procedure, used for the treatment of end-stage ankle arthrosis and instability. There are dozens of described procedures in the literature, all with varying rates of success. Two of the most common reasons for reoperation in tibiotalar arthrodesis are nonunion and infection; few studies have established any associations between patient/surgical factors and reoperation for nonunion and infection.

The first part of this thesis focuses on determining the rate of reoperation to the ipsilateral lower limb and if any patient/surgical factors are associated with reoperation for nonunion and infection. The second part of this thesis ...


Cherenkov Excited Short-Wavelength Infrared Fluorescence Imaging In Vivo With External Beam Radiation, Xu Cao, Shudong Jiang, Mengyu Jeremy Jia, Jason R. Gunn, Tianshun Miao, Scott C. Davis, Petr Bruza, Brian W. Pogue Nov 2018

Cherenkov Excited Short-Wavelength Infrared Fluorescence Imaging In Vivo With External Beam Radiation, Xu Cao, Shudong Jiang, Mengyu Jeremy Jia, Jason R. Gunn, Tianshun Miao, Scott C. Davis, Petr Bruza, Brian W. Pogue

Open Dartmouth: Faculty Open Access Scholarship

Cherenkov emission induced by external beam radiation therapy from a clinical linear accelerator (LINAC) can be used to excite phosphors deep in biological tissues. As with all luminescence imaging, there is a desire to minimize the spectral overlap between the excitation light and emission wavelengths, here between the Cherenkov and the phosphor. Cherenkov excited short-wavelength infrared (SWIR, 1000 to 1700 nm) fluorescence imaging has been demonstrated for the first time, using long Stokes-shift fluorophore PdSe quantum dots (QD) with nanosecond lifetime and an optimized SWIR detection. The 1  /  λ2 intensity spectrum characteristic of Cherenkov emission leads to low overlap of ...


Investigation And Validation Of Imaging Techniques For Mitral Valve Disease Diagnosis And Intervention, Claire Vannelli Nov 2018

Investigation And Validation Of Imaging Techniques For Mitral Valve Disease Diagnosis And Intervention, Claire Vannelli

Electronic Thesis and Dissertation Repository

Mitral Valve Disease (MVD) describes a variety of pathologies that result in regurgitation of blood during the systolic phase of the cardiac cycle. Decisions in valvular disease management rely heavily on non-invasive imaging. Transesophageal echocardiography (TEE) is widely recognized as the key evaluation technique where backflow of high velocity blood can be visualized under Doppler. In most cases, TEE imaging is adequate for identifying mitral valve pathology, though the modality is often limited from signal dropout, artifacts and a restricted field of view. Quantitative analysis is an integral part of the overall assessment of valve morphology and gives objective evidence ...


Targeted Delivery Of Bioactive Molecules For Vascular Intervention And Tissue Engineering, Hannah A. Strobel, Elisabet I. Qendro, Eben Alsberg, Marsha W. Rolle Nov 2018

Targeted Delivery Of Bioactive Molecules For Vascular Intervention And Tissue Engineering, Hannah A. Strobel, Elisabet I. Qendro, Eben Alsberg, Marsha W. Rolle

Open Access Articles

Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents ...


Engineering Success On The Field: A Reflection On The Epics Ironman Pediatric Prosthetic Project, Glynn Gallaway Nov 2018

Engineering Success On The Field: A Reflection On The Epics Ironman Pediatric Prosthetic Project, Glynn Gallaway

Purdue Journal of Service-Learning and International Engagement

Glynn Gallaway is a student in the Purdue Mechanical Engineering Class of 2020 with interests in the health care, assistive technology, and medical device industries. Glynn is from Dallas, Texas, and was inspired to pursue this career path through her interactions with youth with special needs. She joined the EPICS Ironman team in the fall of 2016 during her first year at Purdue as a part of the learning community. In this article, she discusses her experiences on the Ironman team creating a pediatric prosthetic for a young local athlete. The goal of the Ironman team is to create a ...


The Development Of Hybrid Lipid-Polymer Nanoparticle Architectures For The Sustained-Release Of Small Hydrophilic Molecules, Keegan Curry, Jill M. Steinbach-Rankins Dr. Nov 2018

The Development Of Hybrid Lipid-Polymer Nanoparticle Architectures For The Sustained-Release Of Small Hydrophilic Molecules, Keegan Curry, Jill M. Steinbach-Rankins Dr.

Posters-at-the-Capitol

Introduction: Polymeric nanoparticles (NPs) have been utilized as drug delivery vehicles for a variety of applications. However, achieving sustained-release of small hydrophilic agents is a primary challenge for their use in prolonged delivery applications.

Objective: This study investigates how novel lipid-polymer hybrid particle architectures can be used to improve the release profile of small hydrophilic encapsulants. Here, PLGA NPs were produced via electrospraying and emulsions. Particles with a core-shell architecture were produced via coaxial electrospraying and the ability of this architecture to sustain release was examined. In addition, we combined polymeric core-shell NPs with a lipid coating to improve biocompatibility ...


Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl Nov 2018

Acoustofluidics And Soft Materials Interfaces For Biomedical Applications, Frank A. Fencl

Biomedical Engineering ETDs

This dissertation describes fabrication of devices and other tools for biomedical applications through the integration of acoustofluidic systems with bio separation assays, instrumentation components, and soft materials interfaces. For example, we engineer a new class of transparent acoustic flow chambers ideal for optical interrogation. We demonstrate efficacy of these devices by enhancing the signal for high throughput acoustic flow cytometry, capable of robust particle focusing across multiple parallel flowing streams. We also investigate an automated sampling system to determine the parameters of transient particle stream focusing in between sample boluses and air bubbles to model a high throughput, multi-sampling acoustic ...


Aqueous Humor Dynamics And The Constant-Pressure Perfusion Model Of Experimental Glaucoma In Brown-Norway Rats, Kayla R. Ficarrotta Nov 2018

Aqueous Humor Dynamics And The Constant-Pressure Perfusion Model Of Experimental Glaucoma In Brown-Norway Rats, Kayla R. Ficarrotta

Graduate Theses and Dissertations

Glaucoma affects tens of millions of people and is the leading cause of irreversible blindness worldwide. Virtually all current glaucoma therapies target elevated intraocular pressure (IOP); however, the contribution of intracranial pressure (ICP) to glaucoma has recently garnered interest. Strain at the optic nerve head is now known to depend on the translaminar pressure difference (TLPD), which is the difference between IOP and ICP, rather than IOP alone. A better understanding of how IOP and ICP relate to glaucoma development and progression is essential for developing improved therapies and diagnostic tests. Glaucoma is commonly modeled in rats, yet aqueous humor ...


The Application Of Electric Cell-Substrate Impedance Sensing (Ecis) Biosensors, Xudong Zhang, Sunghoon Jang Nov 2018

The Application Of Electric Cell-Substrate Impedance Sensing (Ecis) Biosensors, Xudong Zhang, Sunghoon Jang

Publications and Research

Electric cell-substrate impedance sensing (ECIS) is a label-free and non-invasive technique for analyzing the activities and morphologies of cells. The ECIS sensors are able to measure the impedance spectroscopy of cells attaching on the sensor substrates. The cell activities and morphologies influence the measure impedance directly. Traditional toxicity analysis has complicated processes compared to biosensor-based analysis. In this study, the toxicity analysis was performed with biosensor based on ECIS technique. The experimental results show that the ECIS sensor is able to quickly distinguish the toxic and non-toxic substance.


Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin Nov 2018

Demonstration Of Monolithic-Silicon Carbide (Sic) Neural Devices, Evans K. Bernardin

Graduate Theses and Dissertations

Brain Machine Interfaces (BMI) provide a communication pathway between the electrical conducting units of the brain (neurons) and external devices. BMI technology may provide improved neurological and physiological functions to patients suffering from disabilities due to damaged nervous systems. Unfortunately, microelectrodes used in Intracortical Neural Interfaces (INI), a subset of the BMI device family, have yet to demonstrate long-term in vivo performance due to material, mechanical and electrical failures. Many state-of-the-art INI devices are constructed using stacks of multiple materials, such as silicon (Si), titanium (Ti), platinum (Pt), parylene C, and polyimide. Not only must each material tolerate the biological ...


Modeling In The Physiology Classroom, Sowmya Anjur Nov 2018

Modeling In The Physiology Classroom, Sowmya Anjur

Faculty Publications & Research

Physiology and Disease is a Biology elective at IMSA that has been developed to be mostly student-centered. Some examples of student projects include modeling heart structure to reflect function and creating LED arduino monitors to measure heart rate. Students also measure their lung capacity and blood pressure to demonstrate correlation of these values with heart rate, and trace the correlation back to neuronal controls. Projects such as these integrate other disciplines such as engineering and conform to NGSS Science and Engineering standards and NGSS Cross cutting Concepts standards. Students take responsibility for their own learning and articulate better on tests.