Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 3436

Full-Text Articles in Biomedical Engineering and Bioengineering

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling May 2020

Characterization Of Oxone Mediated Tempo-Oxidized Nano Cellulose Mixed-Matrix Membranes During Ultrafiltration And Hemodialysis, Kristyn Robling

Biomedical Engineering Undergraduate Honors Theses

The ninth leading cause of death in the United States is kidney disease, and hemodialysis is the process most commonly prescribed for treatment. It utilizes a selectively permeable membrane filter to remove toxins such as urea from the blood and retain necessary protein levels. However, traditional filters, such as cellulose triacetate, used during dialysis can be inefficient in terms of separation performance and reduction of fouling. Recent exploration of nanoparticles has resulted in the creation of Oxone Mediated TEMPO-Oxidized Nano Cellulose which has properties that are believed to increase hydrophilicity, increase tensile capacity, decrease membrane resistance and lower fouling, making ...


The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg Sep 2019

The Impact Of Patient-Specific Vascular Structure On Localized Cooling In The Human Heart, Nathan Paul Spangenberg

Theses and Dissertations

Acute Myocardial Infarction (AMI) is the leading cause of worldwide death and disability, and approximately 720,000 Americans will experience an AMI in 2018. Studies have shown that rapid hypothermia therapy (<35°C) before reperfusion in patients with AMI can reduce infarct size by 37%. Localized therapeutic hypothermia has proven the potential to cool heart tissue rapidly following AMI, 3°C in 5 minutes. Using Materialise Mimics digital imaging software and the finite volume method we analyzed temperature distributions in six patient-specific left main coronary artery (LMCA) models. A mock circulatory loop was used to determine the exiting temperatures of a standard 7 Fr catheter to feed into our model with flow rates ranging from 29.2 ml/min to 68.85 ml/min. Our work showed that therapeutic hypothermia (TH) temperatures were evident at the outlets of three out of all six heart models, which varied in each left anterior descending (LAD) and left circumflex (LCX) artery depending on flowrate. Results of this study indicate that biovariability in patient-specific vascular structures significantly impacts therapeutic hypothermia (TH) treatment methods. These results indicate that further research is needed to examine more accurate physiological effects, such as pulsatile flow and vessel wall thickness. Future models will be used to provide insight to guide more efficient TH device designs and operation parameters to optimize patient outcomes following AMI.


Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais Aug 2019

Initial Development Of A Prototype Sensor Testbed For Fetal Monitoring, Christian Beauvais

Theses and Dissertations

The objective of this research is to design and manufacture a device that exhibits some of the bio-physiological signals relevant to fetal health monitoring. Currently, limited options exist for testing the performance of monitoring devices such as the tocodynamometer (TOCO) and electrocardiograph (ECG) that measure the bio-physiological signals of a woman and her fetus. Sensor designers need ways of generating and acquiring signals that do not carry the ethical burden of human testing. The development of such a device, as considered in this work, may involve using muscle wire or an inflatable tube as prospective foundations for simulating uterine contraction ...


Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio Aug 2019

Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio

Electronic Thesis and Dissertation Repository

Tissue engineering has emerged as a promising strategy for the replacement of degenerating or damaged tissues in vivo. Also known as regenerative medicine, integral to this therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used to form them. In this study, three different biomaterial scaffolds for tissue engineering applications were fabricated: three-dimensional reverse embedded collagen scaffolds, polymer fusion printed polycaprolactone (PCL) scaffolds, and electrospun gelatin scaffolds. Three-dimensional collagen and PCL scaffolds promoted human adipose-derived stem/stromal cell (ASC) spreading, proliferation, and fibronectin deposition in vitro. Secondly, this study investigated the efficacy of exogenous galectin-3 delivery as a therapeutic ...


Individual Variability Of Functional Connectivity In Resting-State And Naturalistic Fmri Paradigms, Mark O'Reilly Aug 2019

Individual Variability Of Functional Connectivity In Resting-State And Naturalistic Fmri Paradigms, Mark O'Reilly

Electronic Thesis and Dissertation Repository

Resting-state functional magnetic resonance imaging (fMRI) studies are criticized for their lack of control over cognitive states of individuals during observation, which may lead to increased variability in estimates of functional connectivity (FC). Engaging movies have been used in an attempt to synchronize the cognitive states of individuals during the scan, potentially reducing intersubject variability in connectivity estimates. The objective of this study was to investigate the differences in intersubject variability of FC between rest and movie conditions in a healthy cohort. The results demonstrate widespread reductions of intersubject variability of FC in the movie condition compared to the resting-state ...


Predicting And Preventing Traumatic Brain Injury: A Novel Computational Approach, Kewei Bian Aug 2019

Predicting And Preventing Traumatic Brain Injury: A Novel Computational Approach, Kewei Bian

Electronic Thesis and Dissertation Repository

Traumatic brain injury (TBI) is a severe health problem for society. Meanwhile, predicting and preventing TBI remains challenging in the field. Peak rotational velocity was demonstrated to be correlated to brain strain responses, and hence could potentially serve as a good predictor for brain injury. Brain strain was influenced by impact direction, deceleration and impact loading curve shapes. Wearing helmets is an effective way to protect the brain from TBI, but there lacks a study on evaluating helmet performance based on both energy absorption and brain strain response, which this study addressed. Interestingly, helmet shell absorbed around half of the ...


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


Generation Of A Ccl2 Knockout Using Crispr/Cas9 And Lipid Mediated Transfection In Ct-26 Murine Colon Carcinoma Cells, Emma Sullivan Aug 2019

Generation Of A Ccl2 Knockout Using Crispr/Cas9 And Lipid Mediated Transfection In Ct-26 Murine Colon Carcinoma Cells, Emma Sullivan

Biomedical Engineering Undergraduate Honors Theses

CCL2 is an inflammatory mediator that is released by tumor cells to activate and direct immune cell species, especially macrophages, to inflammatory sites within the body. The goal of this project was to successfully generate knockout the CCL2 ligand gene using a CRISPR/Cas9 complex delivered via lipid mediated transfection. The sgRNA and Cas9 mRNA were introduced into the cells via lipid-mediated transfection. The cells were incubated for 4 days, before being analyzed using PCR and gel electrophoresis. We expected to see one band on the first gel and two bands on the second gel. Two bands appeared on the ...


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent ...


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further ...


The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie Aug 2019

The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie

Boise State University Theses and Dissertations

Implant geometry is a significant factor in determining knee stability and patient satisfaction following total knee replacement (TKR). Ineffective muscle recruitment, impaired joint functionality and increased implant wear are consequences of an unstable knee replacement. Current knee laxity evaluation techniques are limited in their ability to account for the muscular response to knee instability. This study utilizes a subject specific lower-body musculoskeletal finite element (FE) model with dynamic muscle loading to evaluate implant laxity during activities of daily living. The effect of varying implant conformity on the muscle forces required to maintain a target kinematic profile during simulated laxity testing ...


Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch Aug 2019

Mechanisms Of Reduced Vascular Tone Following Arteriogenesis Induced By Femoral Artery Ligation, Christopher Hatch

Biomedical Engineering

The presence of a developed, native collateral network can decrease the severity of ischemic injury proceeding arterial occlusion. The collateral network must under arteriogenesis to enlarge and increase blood flow to the ischemic region. Although there has been tremendous effort attempting to understand the mechanisms of arteriogenesis, no therapies have been successful in improving patient outcome. To better understand the mechanisms involved in arteriogenesis, the effect of nitric oxide production, myogenic tone, and a-adrenergic receptors were evaluated as these have been identified as playing an important role in vascular injury. Arteriogenesis was induced by ligating the femoral artery between the ...


Investigation Of The Biosynthetic Process Of Indigoidine, Yi Chen Aug 2019

Investigation Of The Biosynthetic Process Of Indigoidine, Yi Chen

All Graduate Plan B and other Reports

Indigoidine is a natural blue dye with antioxidant and antimicrobial activities. It has also been used as an indicator for gene expression based on its distinctive blue color. Similar to the industry blue dye indigo, indigoidine has a promising potential to be applied in industry as a blue dye. However, the indigoidine production level in the original microorganisms was very low. Heterologous expression of the responsible synthetase gene in Escherichia coli can facilitate the fast and large-scale production of indigoidine. Also, a good understating of the working mechanism of the synthetase is favorable for the industrial application.

In our previous ...


Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon Aug 2019

Spiderworms: Using Silkworms As Hosts To Produce A Hybrid Silkworm-Spider Silk Fiber, Ana Laura Licon

All Graduate Theses and Dissertations

Spider silk has received significant attention due to its fascinating mechanical properties. Given the solitary and cannibalistic behavior of spiders, spider silk farming is impractical. Unlike spiders, silkworms are capable of producing large quantities of a fibrous product in a manner mimetic to spiders, and there already exists an industry to process cocoons into threads and textiles for many applications. The combination of silk farming (sericulture), a millennia old practice, and modern advancements in genetic engineering has given rise to an innovative biomaterial inspired by nature; transgenic silkworm silk.

This project focuses on the creation of chimeric silkworm-spider silk fibers ...


Exploring The Capacity Of Bacteria For Natural Product Biosynthesis, Ozkan Fidan Aug 2019

Exploring The Capacity Of Bacteria For Natural Product Biosynthesis, Ozkan Fidan

All Graduate Theses and Dissertations

This dissertation is focused on exploring the potential of bacteria for the biosynthesis of natural products with the purposes of generating novel natural product derivatives and of improving the titer of pharmaceutically important natural products.

A wide variety of compounds from various sources have been historically used in the treatment and prevention of diseases. Natural products as a major source of new drugs are extensively explored due to their huge structural diversity and promising biological activities such as antimicrobial, anticancer, antifungal, antiviral and antioxidant properties. For instance, penicillin as an early-discovered antimicrobial agent has saved millions of lives, indicating the ...


Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman Aug 2019

Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman

All Graduate Theses and Dissertations

A renewable energy source, biogas, comprises of methane (80%) and carbon dioxide (15%), and is a great alternative to the conventional fossil-based fuels, such as coal, gas and oil. Biogas is created during anaerobic biological digestion of waste materials, such as landfill material, animal manure, wastewater, algal biomass, industrial organic waste etc. A biogas potential from organic waste in the United States is estimated at about 9 million tons per year and technology allows capture of greenhouse gases, such as methane and carbon dioxide, into a form of a fuel. In the light of global climate change and efforts to ...


Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake Aug 2019

Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake

All Graduate Theses and Dissertations

The area around a plant’s roots hosts a complex and diverse microbial community. This environment can include a large number of bacteria that live on the surface of the root and benefit from the nutrients that the roots exude into the soil. These microbes can in turn be beneficial to the plant by protecting the roots from harmful fungi or stressful environmental conditions such as drought. In this thesis, several root-mimetic systems (RMSs) were developed for the study and growth of plant-beneficial bacteria in the laboratory environment. The RMS uses a porous hollow fiber used in hemodialysis as a ...


System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate ...


Simulation Of A Continuum Tumor Model Using Distributed Computing., Dylan A Goodin Jul 2019

Simulation Of A Continuum Tumor Model Using Distributed Computing., Dylan A Goodin

Electronic Theses and Dissertations

Mathematical modeling aims to provide a theoretical framework for understanding tissue dynamics and for establishing treatment response for diseased tissues, such as tumors. Previously published continuum models have successfully represented idealized two-dimensional and three-dimensional tissue for short periods of time. A recently published continuum model of cancer increases model complexity and describes three-dimensional tissue that, due to the required complexity of the geometric multigrid solver, can only be feasibly applied to millimeter-scale simulations. Furthermore, the computational cost for such models has hindered their application in the laboratory and in the clinic. With computational demands greatly outpacing current openMP-based approaches on ...


Feasibility Study Of Intelligent Lvad Control For Optimal Heart Failure Therapy., John A. Karlen Iii Jul 2019

Feasibility Study Of Intelligent Lvad Control For Optimal Heart Failure Therapy., John A. Karlen Iii

Electronic Theses and Dissertations

Background: Left ventricular assist devices (LVAD) are operated at constant speeds (rpm), consequently, pump flow is passively determined by the pressure difference between the LV and aorta. Since the diastolic pressure gradient (~70 mmHg) is much larger than the systolic gradient (~10 mmHg), the majority of pump flow occurs during systole. This limitation results in sub-optimal LV volume unloading, LV washing, and diminished vascular pulsatility that may be associated with increased risk for clinically-significant adverse events, including stroke, bleeding, arteriovenous malformations, and aortic insufficiency. To address these clinical adverse events, an intelligent control strategy using pump speed modulation was developed ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on ...


Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu Jul 2019

Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu

Mechanical & Aerospace Engineering Theses & Dissertations

Polymerase Chain Reaction (PCR) is a relatively novel technique to amplify a few copies of DNA to a detectable level. PCR has already become common in biomedical research, criminal forensics, molecular archaeology, and so on. Many have attempted to develop PCR devices in numerous types for the purpose of the lab-on-chip (LOC) or point-of-care (POC). To use PCR devices for POC lab testing, the price must be lower, and the performance should be comparable to the lab devices. For current practices with the existing methods, the price is pushed up higher partially due to too much dependence on numerous developmental ...


Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman Jun 2019

Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman

Electronic Thesis and Dissertation Repository

Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo ...


Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo Jun 2019

Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo

Theses and Dissertations

Data plenitude is the power but also the bottleneck for data-driven approaches, including neural networks. In particular, Convolutional Neural Networks (CNNs) require an abundant database of training images to achieve a desired high accuracy. Current techniques employed for boosting small datasets are data augmentation and synthetic data generation, which suffer from computational complexity and imprecision compared to original datasets. In this thesis, we intercalate prior knowledge based on the temporal relation between the images in the third dimension. Specifically, we compute the gradient of subsequent images in the dataset to remove extraneous information and highlight subtle variations between the images ...


Scale Optimization Of Milkguard Biosensor For Detecting E. Coli In Human Breast Milk, Jerard Roniel Del Rosario Madamba Jun 2019

Scale Optimization Of Milkguard Biosensor For Detecting E. Coli In Human Breast Milk, Jerard Roniel Del Rosario Madamba

Bioengineering Master's Theses

Milkguard is an alginate-based biosensor developed to detect E. coli in human breast milk via the metabolism of X-gal (5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside) by β-galactosidase. In order to deconvolute metabolic reproducibility from scaling laws, the commercial enzyme β-galactosidase was used to mimic the biological function of the bacterial lac operon. Downscaling was explored as an optimization of the biosensor design based on numerical solutions to Fickian-based diffusion models. The characterization of large capsules (d ≅ 3 mm) and atomized microcapsules (d ≅ 300 ± 60 μm) yielded size-specific Michaelis-Menten constants. Small capsules (Km = 3.6 x 10-4 M; Vmax ’’ = 1.2 x 10 ...


Justrun - Social Gps Running Game, Riley Bergin, Maggie Cai, Simran Judge, Grace Ling Jun 2019

Justrun - Social Gps Running Game, Riley Bergin, Maggie Cai, Simran Judge, Grace Ling

Interdisciplinary Design Senior Theses

With advances in technology allowing people to live more sedentary lives, more and more people are struggling to live a healthy active lifestyle. In the efforts to combat unhealthy styles of living, we wish to introduce a mobile app that takes advantage of motivational game mechanics to motivate players will make go on runs regularly.


Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield Jun 2019

Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield

Interdisciplinary Design Senior Theses

In the United States, approximately one in 4 adults have at least one chronic illness, making up approximately 84% of US Healthcare Spending. Unfortunately, 50% of patients with chronic diseases do not take their medication properly and as such spend more money trying to get better – approximately $100 billion in annual preventable costs. One solution to this issue is digital medicine as it allows for the monitoring of patient medicine consumption.

Our industry partner has developed a three-part digital medicine system with the aim of allowing patients with chronic health issues to better reach their health goals through monitoring of ...


Anti-Infective Mechanism-Based Drug Discovery Via Sortase A, Huong Chau, Alice Matsuda, Leepakshi Johar Jun 2019

Anti-Infective Mechanism-Based Drug Discovery Via Sortase A, Huong Chau, Alice Matsuda, Leepakshi Johar

Bioengineering Senior Theses

Sortase A is a transmembrane protein prominent in gram-negative bacterial strains. It is a virulence factor that anchors other proteins, which facilitate MRSA infections. In the long term, we plan to utilize this protein to create anti-infective drugs as antibiotic resistance continues to become a global health issue. Starting with five NIH drug candidates, we decided to first study Sortase A with B12 due to its historical past of ancient civilizations using natural sources of B12 to treat infections. Our senior design is further centered around understanding how vitamin B12 interacts with Sortase A in vitro, particularly the binding affinity ...


Cervis: Cervical Cancer Early Response Visual Identification System, Julia Lanoha, Claire Hultquist, Rosie Mcdonagh, Hallie Mcnamara Jun 2019

Cervis: Cervical Cancer Early Response Visual Identification System, Julia Lanoha, Claire Hultquist, Rosie Mcdonagh, Hallie Mcnamara

Bioengineering Senior Theses

The goal of CERVIS is to make a substantial, positive impact in the cervical cancer screening space through the development of a minimally invasive, cost effective solution that enables women in low-resource settings to test for cervical cancer on a frugal and effective platform. In the developed world, there are a variety of options that can aid in early detection, including Pap smears. However, due to the high cost and laboratory requirements that accompany this procedure, women in low-resource settings rarely have access to this preventative care or regular screenings for cervical cancer. Using new research about the changes in ...