Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 195

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


A Systems Biology Approach Toward Understanding Seed Composition In Soybean, Ling Li, Manhoi Hur, Joon-Yong Lee, Wenxu Zhou, Zhihong Song, Nick Ransom, Cumhur Yusuf Demirkale, Daniel S. Nettleton, Mark E. Westgate, Zebulun Wayne Arendsee, Vidya Vaancheeswaran Iyer, Jacqueline V. Shanks, Basil Nikolau, Eve Wurtele Jun 2019

A Systems Biology Approach Toward Understanding Seed Composition In Soybean, Ling Li, Manhoi Hur, Joon-Yong Lee, Wenxu Zhou, Zhihong Song, Nick Ransom, Cumhur Yusuf Demirkale, Daniel S. Nettleton, Mark E. Westgate, Zebulun Wayne Arendsee, Vidya Vaancheeswaran Iyer, Jacqueline V. Shanks, Basil Nikolau, Eve Wurtele

Dan Nettleton

Background

The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks.

Results

With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and ...


Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier Jun 2019

Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier

Bioelectrics Publications

Nanosecond bipolar pulse cancellation, a recently discovered Phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (> 100 mu s) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). Here ...


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery Jun 2019

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of ...


Study Of Paper Microbial Fuel Cells For Use In On-Site Wastewater Testing, William A. Tolmasoff, William A. Tolmasoff Jun 2019

Study Of Paper Microbial Fuel Cells For Use In On-Site Wastewater Testing, William A. Tolmasoff, William A. Tolmasoff

Master's Theses and Project Reports

This study demonstrated a technique for fabricating simple, low-cost Paper Microbial fuel cells (PMFC’s) in the model of a previous study to, for the first time, produce voltage from wastewater effluent. The PMFC’s were created by stacking and gluing the main components of an MFC together: reservoir layer; anode; cation exchange membrane (CEM); air cathode. A wax printer was used to create the hydrophobic borders of the PMFC’s on filter paper, and graphite paint was applied to the paper to create the anode. The CEM’s considered were filter paper, wax, and Nafion, with Nafion being the ...


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult ...


Long-Term, Super-Resolution Imaging Of Amyloid Structures Using Transient Amyloid Binding Microscopy, Tianben Ding, Kevin Spehar, Jan Bieschke, Matthew D. Lew Feb 2019

Long-Term, Super-Resolution Imaging Of Amyloid Structures Using Transient Amyloid Binding Microscopy, Tianben Ding, Kevin Spehar, Jan Bieschke, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Amyloid fibrils and tangles are signatures of Alzheimer disease, but nanometer-sized aggregation intermediates are hypothesized to be the structures most toxic to neurons. The structures of these oligomers are too small to be resolved by conventional light microscopy. We have developed a simple and versatile method, called transient amyloid binding (TAB), to image amyloid structures with nanoscale resolution using amyloidophilic dyes, such as Thioflavin T, without the need for covalent labeling or immunostaining of the amyloid protein. Transient binding of ThT molecules to amyloid structures over time generates photon bursts that are used to localize single fluorophores with nanometer precision ...


Computational Protein Design For Peptide-Directed Bioconjugation, Joseph Gabriel Plaks Jan 2019

Computational Protein Design For Peptide-Directed Bioconjugation, Joseph Gabriel Plaks

Chemical & Biological Engineering Graduate Theses & Dissertations

Proteins enable living organisms to perform many of their critical functions, having been applied over evolutionary time to solve problems of overwhelming diversity and complexity. Protein engineering seeks to deploy these versatile molecules in addressing problems of human concern and would benefit from innovations that improve protein utilization in unnatural environments as well as from increased predictive capability in protein design.

Bioconjugation facilitates the use of proteins in unnatural environments by permitting the attachment of molecules, such as polymers, that can modulate protein stability, solubility, and activity and by mediating protein immobilization. We initially explored this propensity of bioconjugation by ...


Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma Jan 2019

Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma

Theses and Dissertations

Over 200,000 cases of breast cancer are diagnosed every year. Nearly 20% of these patients supplement their diets with some form of vitamin D. This high frequency of vitamin D supplement use may be due in part to research suggesting that cancer patients with higher serum vitamin D3 levels have better prognoses than patients with low serum vitamin D3. However, double-blind clinical trials on the efficacy of vitamin D3 supplementation in breast cancer have been inconclusive. A recent meta-analysis showed evidence of reduced cancer recurrence in patients taking vitamin D3 supplements who had ‘estrogen receptor ...


Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning Jan 2019

Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning

Undergraduate Honors Theses

Surgery is currently the primary treatment option for aortic valve stenosis (AVS) patients, many of whom are ineligible for surgery and are left untreated. AVS is progression is known to differ between males and females, and an understanding of sex-specific mechanisms of disease progression is imperative in developing accurate treatment options for men and women. The development of a nonsurgical therapy for AVS patients requires a deeper understanding of the molecular and cellular mechanisms of AVS progression. Currently, the role of calcium phosphate nanoparticles detected in the aortic valve during early stages of AVS in influencing disease progression and valvular ...


Modulating Viscoelasticity, Stiffness, And Degradation Of Synthetic Cellular Niches Via Stoichiometric Tuning Of Covalent Versus Dynamic Noncovalent Cross-Linking, Yu Tan, Henry Huang, David C. Ayers, Jie Song Aug 2018

Modulating Viscoelasticity, Stiffness, And Degradation Of Synthetic Cellular Niches Via Stoichiometric Tuning Of Covalent Versus Dynamic Noncovalent Cross-Linking, Yu Tan, Henry Huang, David C. Ayers, Jie Song

Open Access Articles

Viscoelasticity, stiffness, and degradation of tissue matrices regulate cell behavior, yet predictive synergistic tuning of these properties in synthetic cellular niches remains elusive. We hypothesize that reversible physical cross-linking can be quantitatively introduced to synthetic hydrogels to accelerate stress relaxation and enhance network stiffness, while strategic placement of isolated labile linkages near cross-linking sites can predict hydrogel degradation, both of which are essential for creating adaptive cellular niches. To test these hypotheses, chondrocytes were encapsulated in hydrogels formed by biorthogonal covalent and noncovalent physical cross-linking of a pair of hydrophilic building blocks. The stiffer and more viscoelastic hydrogels with DBCO-DBCO ...


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after ...


Brain-Computer Interfaces Using Electrocorticography And Surface Stimulation, Jesse Wheeler Aug 2018

Brain-Computer Interfaces Using Electrocorticography And Surface Stimulation, Jesse Wheeler

Engineering and Applied Science Theses & Dissertations

The brain connects to, modulates, and receives information from every organ in the body. As such, brain-computer interfaces (BCIs) have vast potential for diagnostics, medical therapies, and even augmentation or enhancement of normal functions. BCIs provide a means to explore the furthest corners of what it means to think, to feel, and to act—to experience the world and to be who you are. This work focuses on the development of a chronic bi-directional BCI for sensorimotor restoration through the use of separable frequency bands for recording motor intent and providing sensory feedback via electrocortical stimulation. Epidural cortical surface electrodes ...


Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon Aug 2018

Improving Biomanufacturing Production With Novel Elp-Based Transcriptional Regulators, Juya Jeon, Logan R. Readnour, Kevin V. Solomon

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microbes can be used to produce valuable drugs, chemicals, and biofuels, but their potential has not been fully realized due to low production yields. To improve biomanufacturing processes and yield, we are developing novel, transcriptional regulators using biosynthesis technology in order to improve cellular health and overall production. Our regulator contains elastin-like polypeptides (ELPs), which make ideal sensors since they exhibit a sharp, inverse phase transition to indicators of cell health such as intracellular pH and ionic strength, and external stimuli such as temperature. We hypothesize that ELP can be fused to transcription factors to control expression of target genes ...


Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala Aug 2018

Cost-Effective Paper-Based Diagnostic Using Split Proteins To Detect Yeast Infections, Zachary R. Berglund, Kevin V. Solomon, Mohit S. Verma, Moiz Rasheed, Zachary Hartley, Kevin Fitzgerald, Kok Zhi Lee, Janice Chan, Julianne Dejoie, Makayla Schacht, Alex Zavala

The Summer Undergraduate Research Fellowship (SURF) Symposium

The common yeast infection, vulvovaginal candidiasis, affects three out of four women throughout their lifetime and can be spread to their child in the form of oral candidiasis (thrush). This disease is caused by the fungal pathogen Candida albicans, which is also a major cause of systemic candidiasis, a rarer but deadly disease with up to a 49% lethality rate. Current widely-used diagnostic methods include cell cultures, pH tests, and antibody detection, to assist effective treatment. Despite availability of various diagnostic methods, there is no inexpensive, rapid, and accurate way to detect C. albicans infection. This project aims to develop ...


Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora Jul 2018

Developing Droplet Based 3d Cell Culture Methods To Enable Investigations Of The Chemical Tumor Microenvironment, Jacqueline A. De Lora

Biomedical Sciences ETDs

Adaptation of cancer cells to changes in the biochemical microenvironment in an expanding tumor mass is a crucial aspect of malignant progression, tumor metabolism, and drug efficacy. In vitro, it is challenging to mimic the evolution of biochemical gradients and the cellular heterogeneity that characterizes cancer tissues found in vivo. It is well accepted that more realistic and controllable in vitro 3D model systems are required to improve the overall cancer research paradigm and thus improve on the translation of results, but multidisciplinary approaches are needed for these advances. This work develops such approaches and demonstrates that new droplet-based cell-encapsulation ...


Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen Jul 2018

Preparation And Characterization Of Functionalized Heparin-Loaded Poly-Ɛ-Caprolactone Fibrous Mats To Prevent Infection With Human Papillomaviruses, Daniela Gonzalez, Jorge Ragusa, Peter C. Angeletti, Gustavo F. Larsen

Chemical and Biomolecular Engineering -- All Faculty Papers

In this study, heparin-loaded poly-ε-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was ...


Mitochondrial Mrna Translation Is Required For Maintenance Of Oxidative Capacity, David Lee May 2018

Mitochondrial Mrna Translation Is Required For Maintenance Of Oxidative Capacity, David Lee

Theses and Dissertations

Oxidative metabolism is required to produce adequate energy to sustain human life. A primary example of deteriorating oxidative capacity is seen in the cardiac musculature during chronic heart failure. This suggests that by improving oxidative potential, chronic heart disease could be mitigated and one approach to accomplish this may be through targeting the mt-mRNA translation system. Purpose: This investigation’s purpose was to characterize disruptions in mt-mRNA translation machinery in multiple forms of cardiomyopathy and to determine if mitochondrial mRNA translation initiation factor (mtIF2) is necessary to maintain oxidative capacity in cardiomyocytes. Methods Using a combination of animal and cell ...


Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings May 2018

Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

Methanogenesis is the biological production of methane. Only anaerobic archaea known as methanogens are capable of such a metabolic feat. They have strict living conditions and substrate sources which determine their rate of metabolism. This is of particular importance from a greenhouse gas reduction perspective or biogas capturing perspective. One of the best ways to optimize methanogen methane production is via genetic manipulation. The current procedures are timely though, therefore a faster cloning processes should be developed. The objective of this study was to optimize a premade genetic transformation kit known as the Gibson Kit. The Gibson Kit was supposed ...


Elastin-Like Polypeptide Fusion Tag As A Protein-Dependent Solubility Enhancer Of Cysteine-Knot Growth Factors, Tamina L. Johnson Apr 2018

Elastin-Like Polypeptide Fusion Tag As A Protein-Dependent Solubility Enhancer Of Cysteine-Knot Growth Factors, Tamina L. Johnson

Graduate Theses and Dissertations

Elastin-like peptide (ELP) fusions promote therapeutic delivery and efficacy. Recombinant proteins, like neurotrophins, lack bioavailability, have short in vivo half-lives, and require high manufacturing costs. Fusing recombinant proteins with genetically encodable ELPs will increase bioavailability, enhance in vivo solubilization, as well as provide a cost-effective method for purification without the need for chromatography. During expression of neurotrophin-ELP (N-ELP) fusions, dense water-insoluble aggregates known as inclusion bodies (IBs) are formed. Inclusion bodies are partially and misfolded proteins that usually require denaturants like Urea for solubilization. Strong denaturants arrest ELPs stimuli-responsive property and increase unwanted aggregation, making purification difficult, yet possible. The ...


Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He Apr 2018

Tracing Actin Filament Bundles In Three-Dimensional Electron Tomography Density Maps Of Hair Cell Stereocilia, Salim Sazzed, Junha Song, Julio Kovacs, Willi Wriggers, Manfred Auer, Jing He

Computer Science Faculty Publications

Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin ...


Study Of Abc Membrane Transporters In Single Live Cells, Preeyaporn Songkiatisak Apr 2018

Study Of Abc Membrane Transporters In Single Live Cells, Preeyaporn Songkiatisak

Chemistry & Biochemistry Theses & Dissertations

The multidrug ATP-binding cassette (ABC) membrane transporters (efflux pumps) are found in both prokaryotes and eukaryotes and they can extrude diverse structurally unrelated substrates, such as antibiotics and chemotherapeutic agents out of the cells. The efflux pumps are responsible for multidrug resistance (MDR) and the failure of numerous treatments in infections and cancers. All ABC membrane transporters share a common modular topology containing two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). The underlying molecular mechanisms regarding how the similar structural ABC membrane transporters could selectively extrude a wide variety of substrates and cause MDR, are not yet fully ...


Armms As A Versatile Platform For Intracellular Delivery Of Macromolecules, Qiyu Wang, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, Quan Lu Mar 2018

Armms As A Versatile Platform For Intracellular Delivery Of Macromolecules, Qiyu Wang, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, Quan Lu

Pediatric Publications and Presentations

Majority of disease-modifying therapeutic targets are restricted to the intracellular space and are therefore not druggable using existing biologic modalities. The ability to efficiently deliver macromolecules inside target cells or tissues would greatly expand the current landscape of therapeutic targets for future generations of biologic drugs, but remains challenging. Here we report the use of extracellular vesicles, known as arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs), for packaging and intracellular delivery of a myriad of macromolecules, including the tumor suppressor p53 protein, RNAs, and the genome-editing CRISPR-Cas9/guide RNA complex. We demonstrate selective recruitment of these macromolecules into ...


Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan Jan 2018

Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan

Electronic Theses and Dissertations

EPR is a powerful biophysical tool that can be used to measure tumor physiology. With the addition of magnetic field gradients, the spectral properties of paramagnetic species can be mapped. To facilitate EPR imaging, methods and instrumentation at frequencies between 250 MHz and 1 GHz were developed.

At low spin concentrations, the rapid scan background signal is often many times larger than the EPR signal of interest. To help remove the background contribution, a data acquisition procedure that takes advantage of a cross-loop resonator and bipolar power supplies was developed at 250 MHz. In this procedure, two scans are collected ...


Production Of Synthetic Spider Silk, Ryan Matthew Hekman Jan 2018

Production Of Synthetic Spider Silk, Ryan Matthew Hekman

University of the Pacific Theses and Dissertations

Spider silk is a material that both has impressive mechanical properties and is also environmentally friendly. Though there are limitless potential engineering applications for such materials, industrial production of spider silk has proven to be challenging. Farming silk from spiders, as is done with silkworms, is not a viable option for large-scale production of spider silk due to the venomous and predatory nature of spiders. Here, an attempt is made to express synthetic spider silk minifibroins heterologously in Escherichia coli, to purify the recombinant spidroins from cell lysate, and to spin them into artificial fibers through a biomimetic process. Silk ...


Development And Characterization Of Improved Red Fluorescent Protein Variants, Premashis Manna Jan 2018

Development And Characterization Of Improved Red Fluorescent Protein Variants, Premashis Manna

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Aequorea victoria-based green fluorescent proteins and their blue, cyan and red counterparts offer unprecedented advantage as biological markers owing to their genetic encodability and straightforward expression in different organisms. Fluorescent proteins are characterized with complex photo-kinetics due to the presence of light-induced non-fluorescent or dark states which are responsible for their fluorescence intermittency or 'blinking'. We developed time- and frequency-domain techniques for probing the kinetics involving dark state conversion (DSC) and ground state recovery (GSR) in red fluorescent proteins (RFPs). Ensemble-level DSC and GSR kinetics in FPs were presented in the context of their single molecule fluorescence behaviors. Although ...


Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy Jan 2018

Modeling And Designing Genetic Devices Using Transcriptional Interference In Escherichia Coli, Antoni Escalas Bordoy

Chemical & Biological Engineering Graduate Theses & Dissertations

Microorganisms inhabit every extreme location of our planet. In their journey through the ages, they have been able to incredibly adapt to a myriad of different environmental conditions. A key mechanism for their success has been their ability to respond to environmental and nutritional changes through regulatory programs primarily encoded at the transcriptional level. This adaptability to new environments is what encourages scientists to believe in engineering a biological revolution that will transform our lives due to its potential to result in innovative approaches for bioremediation, sustainable energy production, and biomedical therapies. This thesis explores the potential of the phenomenon ...


Connecting Protein Structure And Dynamics On Biomaterials With The Foreign Body Response, David Faulon Marruecos Jan 2018

Connecting Protein Structure And Dynamics On Biomaterials With The Foreign Body Response, David Faulon Marruecos

Chemical & Biological Engineering Graduate Theses & Dissertations

The harsh environment of the foreign body response (FBR) has the potential to negatively impact the implantations of biomaterials in the body. The FBR is initiated by inflammatory cells that recognize the material as foreign through surface-adsorbed proteins. When proteins interact with surfaces, they can unfold and expose epitopes that may be recognized by immune cells and trigger a series of reactions. Importantly, the presentation of unfolded proteins is directly influenced by the highly dynamic and heterogeneous behavior of proteins in near-surface environments, as well as by the physicochemical features of the underlying surface. Such behavior is the result of ...


Crispr-Assisted Interrogation And Engineering Of Metabolic Pathways, Marcelo Colika Bassalo Jan 2018

Crispr-Assisted Interrogation And Engineering Of Metabolic Pathways, Marcelo Colika Bassalo

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

Since Mendel’s work established the basis of inheritance in the late 1800s, multiple decades of research characterized monogenic traits across all domains of life. Yet, we still have a fairly limited knowledge on the genotype behind the vast majority of phenotypes. It is now evident that discrete biological functions can rarely be linked to a single gene. Further, these multigenic traits are often interconnected via a sophisticated and robust metabolic and regulatory network, selected by evolution in order to optimally distribute resources. The complexity of these multigenic traits challenges traditional genetic tools, broadly limiting our capability to understand and ...


Skeletal Muscle Metabolism: From Tissue To Stem Cell, Katherine Elise Gadek Jan 2018

Skeletal Muscle Metabolism: From Tissue To Stem Cell, Katherine Elise Gadek

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

Excessive circulating triglycerides due to reduction or loss of lipoprotein lipase (LPL) activity contribute to hypertriglyceridemia and increased risk for pancreatitis. The only gene therapy treatment for LPL deficiency decreases pancreatitis but minimally reduces hypertriglyceridemia. Synthesized in striated muscle and adipose tissue, LPL is then trafficked to blood vessel endothelial cells where it hydrolyzes triglycerides into free fatty acids. We conditionally knocked out LPL in differentiated striated muscle tissue lowering striated muscle LPL activity and causing hypertriglyceridemia. We crossed these LPL knockout mice with mice possessing a conditional avian retroviral receptor gene and infected mice with human LPL or mCherry ...