Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Boise State University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 51

Full-Text Articles in Biomedical Engineering and Bioengineering

The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie Aug 2019

The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie

Boise State University Theses and Dissertations

Implant geometry is a significant factor in determining knee stability and patient satisfaction following total knee replacement (TKR). Ineffective muscle recruitment, impaired joint functionality and increased implant wear are consequences of an unstable knee replacement. Current knee laxity evaluation techniques are limited in their ability to account for the muscular response to knee instability. This study utilizes a subject specific lower-body musculoskeletal finite element (FE) model with dynamic muscle loading to evaluate implant laxity during activities of daily living. The effect of varying implant conformity on the muscle forces required to maintain a target kinematic profile during simulated laxity testing ...


Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin ...


Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici Sep 2018

Nonprehensile Manipulation Of Deformable Objects: Achievements And Perspectives From The Rodyman Project, Aykut C. Satici

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The goal of this work is to disseminate the results achieved so far within the RODYMAN project related to planning and control strategies for robotic nonprehensile manipulation. The project aims at advancing the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to future enhance the possibility of employing robots in anthropic environments. The final demonstrator of the RODYMAN project will be an autonomous pizza maker. This article is a milestone to highlight the lessons learned so far and pave the way towards future research directions and critical discussions.


Studying The Applicability Of Biostimulated Calcite Precipitation In Stabilizing Expansive Soils, Md Touhidul Islam Aug 2018

Studying The Applicability Of Biostimulated Calcite Precipitation In Stabilizing Expansive Soils, Md Touhidul Islam

Boise State University Theses and Dissertations

Of the four types of soils, clays are often associated with issues related to low bearing capacity, high compressibility, swelling and shrinking nature. For example, expansive soils swell and shrink with moisture ingress and digress and are prevalent in several parts of the world causing billions of dollars in damages annually to various civil infrastructures. Several ground improvement techniques such as chemical stabilization, deep soil mixing, moisture barriers, and others were employed to counteract these soils. However, these methods are impractical in certain situations and unsustainable in others due to their economic and environmental impacts. Microbiological treatment of soils could ...


Sex Differences In Lower Limb Biomechanics During A Single-Leg Cut With Body Borne Load, Auralea Carylon Fain May 2018

Sex Differences In Lower Limb Biomechanics During A Single-Leg Cut With Body Borne Load, Auralea Carylon Fain

Boise State University Theses and Dissertations

Introduction: Musculoskeletal injuries are ever-increasing in military personnel, particularly females. These musculoskeletal injuries are attributed to adaptations in lower limb biomechanics while performing routine military tasks, such as a single-leg cut, with the addition of body borne load. However, it is unknown if females and males exhibit similar lower limb biomechanics with the addition of body borne load during these tasks. This study sought to compare the lower limb biomechanical adaptations exhibited by females and males performing a single-leg cut with body borne load. Methods: Eleven females and 17 males had lower limb biomechanics quantified during a single-leg cut with ...


Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb May 2018

Effects Of Stride Length On Lower Limb Stiffness When Running With Body Borne Load, Nick Lobb

Boise State University Theses and Dissertations

Introduction: During military activities, soldiers are often required to run at a fixed cadence with body borne load, but these loads purportedly increase leg stiffness, leading to increased risk of musculoskeletal injury. Yet, to date, it is unknown how altering stride length when running with body borne load affects lower limb stiffness for males and females. Purpose: To quantify leg stiffness, and lower limb joint (hip, knee and ankle) stiffness for males and females using different stride lengths to run with body borne loads of 20 kg, 25 kg, 30 kg, and 35 kg. Methods: Twenty-seven (17 males and 10 ...


Enucleated Cells Reveal Differential Roles Of The Nucleus In Cell Migration, Polarity, And Mechanotransduction, Gunes Uzer Mar 2018

Enucleated Cells Reveal Differential Roles Of The Nucleus In Cell Migration, Polarity, And Mechanotransduction, Gunes Uzer

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The nucleus has long been postulated to play a critical physical role during cell polarization and migration, but that role has not been defined or rigorously tested. Here, we enucleated cells to test the physical necessity of the nucleus during cell polarization and directed migration. Using enucleated mammalian cells (cytoplasts), we found that polarity establishment and cell migration in one dimension (1D) and two dimensions (2D) occur without the nucleus. Cytoplasts directionally migrate toward soluble (chemotaxis) and surface-bound (haptotaxis) extracellular cues and migrate collectively in scratch-wound assays. Consistent with previous studies, migration in 3D environments was dependent on the nucleus ...


Waste Heat Recovery From Distributed Rack-Based Fuel Cells Using Thermoelectric Generators, Khosrow Ebrahimi, Alfonso Ortega, Calvin Li, Kazuaki Yazawa, Sean James Jan 2018

Waste Heat Recovery From Distributed Rack-Based Fuel Cells Using Thermoelectric Generators, Khosrow Ebrahimi, Alfonso Ortega, Calvin Li, Kazuaki Yazawa, Sean James

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Off-grid power generation has been demonstrated in data centers through the deployment of site-specific centralized power plants utilizing gas turbine or fuel cell-based power generation. Because power is centrally generated, power distribution requires a high voltage power grid within the data center with its ancillary storage and conditioning requirements and equipment. An alternative approach is a completely decentralized distributed power generation system in which fuel cells deployed within individual server racks provide power localized to that rack only. Among other advantages, such an approach also greatly increases the ability to modulate and control power to individual rack units. Because the ...


Optical Properties Of Organic Carbon And Soot Produced In An Inverse Diffusion Flame, C. Russo, B. Apicella, J. S. Lighty, A. Ciajolo, A. Tregrossi Nov 2017

Optical Properties Of Organic Carbon And Soot Produced In An Inverse Diffusion Flame, C. Russo, B. Apicella, J. S. Lighty, A. Ciajolo, A. Tregrossi

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The carbonaceous matter (soot plus organic carbon) sampled downstream of an ethylene inverse diffusion flame (IDF) was chemically and spectroscopically analyzed in detail. In particular, the H/C ratio, the UV-Visible absorption coefficient and Raman parameters were measured and found to be representative of a highly disordered sp2 -rich carbon as the early soot sampled in a premixed flame. In contrast, the optical band gap was found to be relatively low (0.7eV), closer to the optical band gap of graphite than to that of medium-sized polycyclic aromatic hydrocarbons (>2eV) which are widely considered to be soot precursors and ...


Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak Sep 2017

Direct Numerical Simulation Of Turbulent Katabatic Slope Flows With An Immersed-Boundary Method, Clancy Umphrey, Ray Deleon, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

We investigate a Cartesian-mesh immersed-boundary formulation within an incompressible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept study, we consider four different immersed-boundary reconstruction schemes for imposing a Neumann-type boundary condition on the buoyancy field. Prandtl’s laminar solution is used to demonstrate the second-order accuracy of the numerical solutions globally. Direct numerical simulation of a turbulent katabatic flow is then performed to investigate the applicability of the proposed schemes in the turbulent regime by analyzing both first- and second-order statistics of turbulence. First-order statistics show that turbulent katabatic flow simulations are noticeably sensitive to ...


Dynamic Rating Of Overhead Transmission Lines Over Complex Terrain Using A Large-Eddy Simulation Paradigm, Tyler Phillips, Ray Deleon, Inanc Senocak Aug 2017

Dynamic Rating Of Overhead Transmission Lines Over Complex Terrain Using A Large-Eddy Simulation Paradigm, Tyler Phillips, Ray Deleon, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Dynamic Line Rating (DLR) enables rating of power line conductors using real-time weather conditions. Conductors are typically operated based on a conservative static rating that assumes worst case weather conditions to avoid line sagging to unsafe levels. Static ratings can cause unnecessary congestion on transmission lines. To address this potential issue, a simulation-based dynamic line rating approach is applied to an area with moderately complex terrain. A micro-scale wind solver — accelerated on multiple graphics processing units (GPUs) — is deployed to compute wind speed and direction in the vicinity of powerlines. The wind solver adopts the large-eddy simulation technique and the ...


Detection Of Structural Bolt Detorquing Using Direct Stethoscope Measurement, Joe Guarino, Robert Hamilton Jun 2017

Detection Of Structural Bolt Detorquing Using Direct Stethoscope Measurement, Joe Guarino, Robert Hamilton

Mechanical and Biomedical Engineering Faculty Publications and Presentations

A method for detecting loosened bolts in a structural joint based upon open-loop acoustic measurement is presented. The acoustic measurement is taken directly on the bolt head. The response of the bolt to a proximal hammer impact is evaluated and characterized using wavelet decomposition of the signal measured from the bolt head. Data were also taken from an accelerometer mounted longitudinally and transversely on the bolt head. Results from the stethoscope and the accelerometer are presented from a set of structural bolts in several conditions of preload and looseness. A stethoscope applied to the loose bolt and a proximal bolt ...


Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley Dec 2016

Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley

Boise State University Theses and Dissertations

Meniscal injuries due to tissue tearing are prevalent in the U.S. yet the failure behavior of the meniscus is poorly understood. Clinical studies indicate that fatigue failure causes many of these tears. The highly circumferentially aligned fibers result in transversely isotropic material properties. Tears preferentially align bi-directionally to the fiber orientation. The aim of this study is to present the bi-directional fatigue life behavior of meniscal fibrocartilage. A novel fatigue life approach was developed to achieve this aim. Forty-eight bovine specimens were subjected to cyclic sinusoidal tension-tension stress at 2 Hz until rupture. Normalized peak tensile stresses were determined ...


Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu Dec 2016

Analog Spiking Neuromorphic Circuits And Systems For Brain- And Nanotechnology-Inspired Cognitive Computing, Xinyu Wu

Boise State University Theses and Dissertations

Human society is now facing grand challenges to satisfy the growing demand for computing power, at the same time, sustain energy consumption. By the end of CMOS technology scaling, innovations are required to tackle the challenges in a radically different way. Inspired by the emerging understanding of the computing occurring in a brain and nanotechnology-enabled biological plausible synaptic plasticity, neuromorphic computing architectures are being investigated. Such a neuromorphic chip that combines CMOS analog spiking neurons and nanoscale resistive random-access memory (RRAM) using as electronics synapses can provide massive neural network parallelism, high density and online learning capability, and hence, paves ...


A Validated Software Application To Measure Fiber Organization In Soft Tissue, Erica E. Morrill, Azamat N. Tulepbergenov, Christina J. Stender, Roshani Lamichhane, Raquel J. Brown, Trevor J. Lujan Dec 2016

A Validated Software Application To Measure Fiber Organization In Soft Tissue, Erica E. Morrill, Azamat N. Tulepbergenov, Christina J. Stender, Roshani Lamichhane, Raquel J. Brown, Trevor J. Lujan

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The mechanical behavior of soft connective tissue is governed by a dense network of fibrillar proteins in the extracellular matrix. Characterization of this fibrous network requires the accurate extraction of descriptive structural parameters from imaging data, including fiber dispersion and mean fiber orientation. Common methods to quantify fiber parameters include fast Fourier transforms (FFT) and structure tensors, however, information is limited on the accuracy of these methods. In this study, we compared these two methods using test images of fiber networks with varying topology. The FFT method with a band-pass filter was the most accurate, with an error of 0 ...


Automated Measurement Of Fracture Callus In Radiographs Using Portable Software, Stephen M. Porter, Hannah L. Dailey, Katharine A. Hollar, Karina Klein, James A. Harty, Trevor J. Lujan Jul 2016

Automated Measurement Of Fracture Callus In Radiographs Using Portable Software, Stephen M. Porter, Hannah L. Dailey, Katharine A. Hollar, Karina Klein, James A. Harty, Trevor J. Lujan

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The development of software applications that assist the radiographic evaluation of fracture healing could advance clinical diagnosis and expedite the identification of effective treatment strategies. A radiographic feature regularly used as an outcome measure for basic and clinical fracture healing research is new bone growth, or fracture callus. In this study, we developed OrthoRead, a portable software application that uses image-processing algorithms to detect and measure fracture callus in plain radiographs. OrthoRead utilizes an optimal boundary tracking algorithm to semi-automatically segment the cortical surface, and a novel iterative thresholding selection algorithm to then automatically segment the fracture callus. The software ...


Multidisciplinary Game-Based Approach For Generating Student Enthusiasm For Addressing Critical Infrastructure Challenges, John F. Gardner Jan 2016

Multidisciplinary Game-Based Approach For Generating Student Enthusiasm For Addressing Critical Infrastructure Challenges, John F. Gardner

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Building upon experiences from past course offering,1 several universities across the United States (U.S) have incorporated a critical infrastructure educational game platform as a unifying platform to integrate different disciplines to a common goal. The critical infrastructure backbones of the world provide the delivery mechanisms for energy and other utilities that provide the lifestyle we have come to expect in our society. As these critical infrastructure systems have evolved, the complexity of their integration has generated numerous challenges as a side effect of increased automation that are more pronounced as the infrastructure ages. Although still a modern technological ...


An Immersed Boundary Geometric Preprocessor For Arbitrarily Complex Terrain And Geometry, Inanc Senocak, Micah Sandusky, Rey Deleon, Derek Wade, Kyle Felzien, Marianna Budnikova Nov 2015

An Immersed Boundary Geometric Preprocessor For Arbitrarily Complex Terrain And Geometry, Inanc Senocak, Micah Sandusky, Rey Deleon, Derek Wade, Kyle Felzien, Marianna Budnikova

Mechanical and Biomedical Engineering Faculty Publications and Presentations

There is a growing interest to apply the immersed boundary method to compute wind fields over arbitrarily complex terrain. The computer implementation of an immersed boundary module into an existing flow solver can be accomplished with minor modifications to the rest of the computer program. However, a versatile preprocessor is needed at the first place to extract the essential geometric information pertinent to the immersion of an arbitrarily complex terrain inside a 3D Cartesian mesh. Errors in the geometric information can negatively impact the correct implementation of the immersed boundary method as part of the solution algorithm. Additionally, the distance ...


Use Of Mobile Learning Strategies And Devices For E-Portfolio Content Creation In An Engineering Thermodynamics And Fluid Mechanics Classes: Student Perceptions, Devshikha Bose, Krishna Pakala Jun 2015

Use Of Mobile Learning Strategies And Devices For E-Portfolio Content Creation In An Engineering Thermodynamics And Fluid Mechanics Classes: Student Perceptions, Devshikha Bose, Krishna Pakala

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Use of mobile learning strategies and devices for e-portfolio content creation in an engineering Thermodynamics class: Student perceptions Mobile devices can be useful for creating educational content and to help students to learn better (Benedict & Pence, 2012; Tabor & Minch, 2013; Pereira, Echeazarra, Sanz-Santamaria, & Gutierrez, 2014). The purpose of this study is to determine student perceptions on the efficacy of using mobile learning strategies and devices to create electronic content for inclusion in an engineering individual e-portfolio. Students enrolled in an undergraduate 300-level engineering Thermodynamics class, created multimedia videos and produced content demonstrating course content summaries, problem solving techniques, and written work on concept question ...


Stethoscope-Based Detection Of Detorqued Bolts Using Impact-Induced Acoustic Emissions, Joe Guarino, Robert Hamilton Jan 2015

Stethoscope-Based Detection Of Detorqued Bolts Using Impact-Induced Acoustic Emissions, Joe Guarino, Robert Hamilton

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Results of a preliminary study investigating a simple method for detecting looseness in bolted fasteners of a steel structure are presented. Extensive research by many investigators demonstrates that the frequency response of a bolted structural member changes when one or more bolts are loosened. A simple and effective method for detecting looseness can be applied to bolted joints, using inexpensive and commonly-available equipment and software. The difference between spectrograms associated with tight and loose bolts is clearly apparent due to the presence of a tell-tale mode when one or more bolts are loosened. Further, a striking difference can be elucidated ...


Characterizing Phantom Arteries With Multi-Channel Laser Ultrasonics And Photo-Acoustics, Jami L. Johnson, Kasper Van Wijk, Michelle Sabick Mar 2014

Characterizing Phantom Arteries With Multi-Channel Laser Ultrasonics And Photo-Acoustics, Jami L. Johnson, Kasper Van Wijk, Michelle Sabick

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Multi-channel photo-acoustic and laser ultrasonic waves are used to sense the characteristics of proxies for healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser source and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude, we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology to improve the signal-to-noise ratio of data. We identify vessel proxies with a diameter on the order of 1 mm, at a depth of 18 mm. Variations in scattered and photo-acoustic signatures are related to differences in vessel wall ...


Heavy Element Doping For Enhancing Thermoelectric Properties Of Nanostructured Zinc Oxide, Priyanka Jood, Rutvik J. Mehta, Yanliang Zhang, Theo Borca-Tasciuc, Shi Xue Dou, David J. Singh, Ganpati Ramanath Jan 2014

Heavy Element Doping For Enhancing Thermoelectric Properties Of Nanostructured Zinc Oxide, Priyanka Jood, Rutvik J. Mehta, Yanliang Zhang, Theo Borca-Tasciuc, Shi Xue Dou, David J. Singh, Ganpati Ramanath

Mechanical and Biomedical Engineering Faculty Publications and Presentations

ZnO is a high melting point, high charge carrier mobility semiconductor with potential as a thermoelectric material, but its high thermal conductivity κ is the limiting factor for increasing the thermoelectric figure of merit ZT. Here, we demonstrate that doping ZnO with heavy elements can significantly enhance ZT. Indium doping leads to ultralow κ 3 W m−1 K−1 and a high power factor α2σ 1.230 × 10−3 W m−1 K−2, yielding ZT1000K 0.45 that is 80% higher than non-nanostructured In–Zn–O alloys. Although Bi doping also yields a high Seebeck ...


Simulation Of Vertical Axis Wind Turbines With Variable Pitch Foils, L. Damon Woods, John F. Gardner, Kurt S. Myers Nov 2013

Simulation Of Vertical Axis Wind Turbines With Variable Pitch Foils, L. Damon Woods, John F. Gardner, Kurt S. Myers

Mechanical and Biomedical Engineering Faculty Publications and Presentations

A dynamic computer model of a turbine was developed in MATLAB in order to study the behavior of vertical axis wind turbines (VAWTs) with variable pitch (articulating) foils. The simulation results corroborated the findings of several empirical studies on VAWTs. The model was used to analyze theories of pitch articulation and to inform the discussion on turbine design. Simulations of various models showed that pitch articulation allowed Darrieus-style vertical axis wind turbines to start from rest. Once in motion, the rotor was found to accelerate rapidly to very high rotational velocities. The simulations revealed a plateau region of high efficiency ...


Characterization And Feasibility Of A Portable Oxygen Concentrator For Use With A Mass Casualty Ventilator, Paul Robert Williams Oct 2013

Characterization And Feasibility Of A Portable Oxygen Concentrator For Use With A Mass Casualty Ventilator, Paul Robert Williams

Boise State University Theses and Dissertations

The American Association for Respiratory Care has reported a need to stockpile 5,000-10,000 mass casualty ventilators with supplemental oxygen in preparation for pandemic emergencies (1). The American Medical Association specifies oxygen concentrators supply oxygen at 5 liters per minute at ≥90% purity (2). However, these design specifications may not be the most efficient use of system resources in portable oxygen concentrators using pressure swing adsorption. A testbed was developed to investigate the system performance of an oxygen concentrator while altering the system inlet and outlet pressures and flow rates. This investigation demonstrates that a more efficient portable oxygen ...


All-Optical Photoacoustic Detection Of Absorbers In Tissue Phantoms, Jami Johnson, Michelle Sabick, Kasper Vanwijk Sep 2013

All-Optical Photoacoustic Detection Of Absorbers In Tissue Phantoms, Jami Johnson, Michelle Sabick, Kasper Vanwijk

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Visualizing and characterizing vascular structures is important for many areas of health care, from accessing difficult veins and arteries for laboratory testing, to diagnosis and treatment of cardiovascular disease. Photoacoustic (PA) imaging, one of the fastest growing fields of biomedical imaging, is well suited for this task. PA imaging is based on the photoacoustic effect, which starts with a pulsed laser source incident on biological tissue. If the wavelength of the source matches an absorption wavelength of a chromophore within the tissue, a portion of the pulse energy is absorbed by the chromophore and converted into heat. A subsequent increase ...


Stochastic Reconstruction Of Multiple Source Atmospheric Contaminant Dispersion Events, Derek Wade, Inanc Senocak Aug 2013

Stochastic Reconstruction Of Multiple Source Atmospheric Contaminant Dispersion Events, Derek Wade, Inanc Senocak

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Reconstruction of intentional or accidental release of contaminants into the atmosphere using concentration measurements from a sensor network constitutes an inverse problem. An added complexity arises when the contaminant is released from multiple sources. Determining the correct number of sources is critical because an incorrect estimation could mislead and delay response efforts. We present a Bayesian inference method coupled with a composite ranking system to reconstruct multiple source contaminant release events. Our approach uses a multi-source data-driven Gaussian plume model as the forward model to predict the concentrations at sensor locations. Bayesian inference with Markov chain Monte Carlo (MCMC) sampling ...


Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami L. Johnson May 2013

Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami L. Johnson

Student Research Initiative

Several detection methods have been explored for photoacoustic and ultrasound imaging of biological tissues. Piezoelectric transducers are commonly used, which require contact with the sample and have limiting bandwidth characteristics. Interferometry detection exhibits improved bandwidth characteristics and resolution, yet generally require complicated optics and the incorporation of a contacting reflective medium. Here, we report the use of a noncontact photoacoustic and laser-ultrasound imaging system that does not require the use of a reflective layer. A simple, robust technique known as gas-coupled laser acoustic detection is used, which has previously been applied to composite material evaluation. This technique has the potential ...


Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami Johnson May 2013

Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami Johnson

Student Research Initiative

Several detection methods have been explored for photoacoustic and ultrasound imaging of biological tissues. Piezoelectric transducers are commonly used, which require contact with the sample to be imaged and have limiting bandwidth characteristics. Interferometry detection exhibits improved bandwidth characteristics and resolution, yet generally require complicated optics and the incorporation of a contacting reflective medium. In this paper, we report the use of a noncontact photoacoustic imaging system that does not require the use of a reflective layer. A simple, robust technique known as gas-coupled laser acoustic detection is used, which has previously been applied to evaluation of composite materials. This ...


Toward Characterization Of Diseased Vascular Structures Using Noncontact Photoacoustic And Laser-Ultrasound Imaging: A Phantom Study, Jami Lynne Johnson May 2013

Toward Characterization Of Diseased Vascular Structures Using Noncontact Photoacoustic And Laser-Ultrasound Imaging: A Phantom Study, Jami Lynne Johnson

Boise State University Theses and Dissertations

Visualizing and characterizing atherosclerotic plaques is important in determining the vulnerability of a plaque to rupture. To evaluate rupture risk, several compositional factors should be evaluated, including inflammation, the presence and size of lipid pools, thickness of the fibrous cap, and calcification. Currently, a need exists for an imaging modality that can detect each of these factors in a safe, noninvasive manner with high resolution and contrast at clinically relevant depths. Photoacoustic imaging is a growing field that has the potential to improve plaque diagnosis. Spectroscopic methods have shown promise toward detection of constituents of plaque with unique optical absorption ...


Correlations Between Internal And External Power Outputs During Weightlifting Exercise, Kristof Kipp, Chad Harris, Michelle B. Sabick Apr 2013

Correlations Between Internal And External Power Outputs During Weightlifting Exercise, Kristof Kipp, Chad Harris, Michelle B. Sabick

Mechanical and Biomedical Engineering Faculty Publications and Presentations

Identifying loads that maximize mechanical power is important because training at such loads may optimize gains in dynamic athletic performance. The purpose of this study was to examine correlations between measures of external mechanical power output and internal mechanical joint power output across different loads during a weightlifting exercise. Ten subjects performed 3 sets of the clean exercise at 65, 75, and 85% of 1 repetition maximum (1RM). Peak external mechanical power output was calculated with 4 commonly used methods, whereas an inverse dynamics approach was used to calculate peak internal mechanical power output for the hip, knee, and ankle ...