Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 8143

Full-Text Articles in Biomedical Engineering and Bioengineering

Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman Aug 2019

Optimization Of Biogas Production By Use Of A Microbially Enhanced Inoculum, Anna Doloman

All Graduate Theses and Dissertations

A renewable energy source, biogas, comprises of methane (80%) and carbon dioxide (15%), and is a great alternative to the conventional fossil-based fuels, such as coal, gas and oil. Biogas is created during anaerobic biological digestion of waste materials, such as landfill material, animal manure, wastewater, algal biomass, industrial organic waste etc. A biogas potential from organic waste in the United States is estimated at about 9 million tons per year and technology allows capture of greenhouse gases, such as methane and carbon dioxide, into a form of a fuel. In the light of global climate change and efforts to ...


Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake Aug 2019

Characterization Of Biofilms In A Synthetic Rhizosphere Using Hollow Fiber Root-Mimetic Systems, Michelle Bonebrake

All Graduate Theses and Dissertations

The area around a plant’s roots hosts a complex and diverse microbial community. This environment can include a large number of bacteria that live on the surface of the root and benefit from the nutrients that the roots exude into the soil. These microbes can in turn be beneficial to the plant by protecting the roots from harmful fungi or stressful environmental conditions such as drought. In this thesis, several root-mimetic systems (RMSs) were developed for the study and growth of plant-beneficial bacteria in the laboratory environment. The RMS uses a porous hollow fiber used in hemodialysis as a ...


False-Match Symmetry: Data Files And Simulation Code, Cherlyn J. Ng, Bart Farell Jul 2019

False-Match Symmetry: Data Files And Simulation Code, Cherlyn J. Ng, Bart Farell

Biomedical and Chemical Engineering

This record provides data from random-dot stereograms to use in solving the binocular correspondence problem through false-match symmetry. It also provides an implementation of the algorithm used in the article ‘Solving the stereo correspondence problem with false matches’ [Ng CJ, Farell B (2019) Solving the stereo correspondence problem with false matches. PLoSONE 14(7): e0219052. https://doi.org/10.1371/journal.pone.0219052].

The record consists of two parts, Data and Algorithm Demo. The Data component consists of pre-computed Keplerian arrays of all possible matches between filtered random-dot image pairs containing stereoscopically defined surfaces. The Algorithm Demo allows data files ...


Multimodal Quantitative Imaging Of Brain Cancer In Cultured Cells, Xin Feng, Alona Muzikansky, Alonzo H. Ross, Michael R. Hamblin, Peter R. Jermain, Anna N. Yaroslavsky Jul 2019

Multimodal Quantitative Imaging Of Brain Cancer In Cultured Cells, Xin Feng, Alona Muzikansky, Alonzo H. Ross, Michael R. Hamblin, Peter R. Jermain, Anna N. Yaroslavsky

Open Access Articles

Fluorescence emission, polarization and subcellular localization of methylene blue (MB) were studied in four cancerous and two normal human brain cell lines. Fluorescence emission and polarization images were acquired and analyzed. The co-localization of MB with mitochondria, lysosomes and nuclei of the cells was evaluated. Glioblastoma cells exhibited significantly higher MB fluorescence polarization compared to normal astrocytes. Preferential accumulation of MB in mitochondria of glioblastoma cells may explain higher fluorescence polarization values in cancer cells as compared to normal. These findings may lead to the development of a quantitative method for the detection of brain cancer in single cells.


Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane Jul 2019

Design, Development, And Field Testing A Visnir Integrated Multi-Sensing Soil Penetrometer, Nuwan K. Wijewardane

Biological Systems Engineering--Dissertations, Theses, and Student Research

The research community in soil science and agriculture lacks a cost-effective and rapid technology for in situ, high resolution vertical soil sensing. Visible and near infra-red (VisNIR) technology has the potential to be used for such sensor development due to its ability to derive multiple soil properties rapidly using a single spectrum. Such efforts must, however, overcome a few challenges: (i) a dry ground soil spectral library that can be used to predict the target soil properties accurately, (ii) a robust design which can acquire high quality VisNIR spectra of soil, (iii) an effective method that can link field intact ...


System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate ...


A Novel Technique To Characterize The Surface Hydrophobicity Of Proteins Using Inverse Liquid Chromatography, Dilip Sethi, Sarah Hedberg, Daryl Williams Jul 2019

A Novel Technique To Characterize The Surface Hydrophobicity Of Proteins Using Inverse Liquid Chromatography, Dilip Sethi, Sarah Hedberg, Daryl Williams

Biological and Pharmaceutical Complex Fluids III: Protein Self-Assembly, Rheology and Interfacial Properties

This work presents a novel technique to characterize the surface hydrophobicity and other surface properties of proteins. The surface properties of industrial and therapeutic proteins are key to understanding their behavior in-situ, in the laboratory and in processes. Protein surface hydrophobicity is a marker for three dimensional structure, stability and function. Inverse Liquid Chromatography of Proteins (ILCP) with small molecule hydrophobic probes can be used to obtain direct measurements of the surface hydrophobicity of column resin-bound proteins using changes in probe retention behavior. The dimensionless hydrophobicity factor (Hf) for Lysozyme and BSA was obtained with changing pH and temperature ...


Biophysical Characterization Approaches To Aid The Selection Of Protein Formulations By Predicting Their Physical Stability During Long-Term Storage, Hristo Svilenov, Gerhard Winter Jul 2019

Biophysical Characterization Approaches To Aid The Selection Of Protein Formulations By Predicting Their Physical Stability During Long-Term Storage, Hristo Svilenov, Gerhard Winter

Biological and Pharmaceutical Complex Fluids III: Protein Self-Assembly, Rheology and Interfacial Properties

The formulation of therapeutic proteins is a critical process which aims at finding the most suitable conditions that impede protein degradation during long-term storage. One degradation path of high interest is the non-native aggregation1. The latter can be greatly suppressed by the selection of suitable solution conditions2. Over the years, various biophysical techniques have been explored as tools to quickly select the most promising formulations for long-term storage.

In this talk, we share the experience in our lab how some of these techniques can be integrated into protein formulation studies. We discuss the application of differential scanning calorimetry ...


Aggregation Challenges In The Formulation Development Of Multi-Dose Peptide Products, Jingtao Zhang, Katelyn Smith, Wei Xu, Yongchao Su, Suzanne D’Addio, Yogita Krishnamachari, Jameson Bothe, Daniel Yin, Xinpei Mao Jul 2019

Aggregation Challenges In The Formulation Development Of Multi-Dose Peptide Products, Jingtao Zhang, Katelyn Smith, Wei Xu, Yongchao Su, Suzanne D’Addio, Yogita Krishnamachari, Jameson Bothe, Daniel Yin, Xinpei Mao

Biological and Pharmaceutical Complex Fluids III: Protein Self-Assembly, Rheology and Interfacial Properties

The formulation development of parenteral peptide therapeutics frequently encounters aggregation challenges. In-depth biophysical understanding of the molecule and formulation are required to achieve formulation robustness. Further, unique considerations need to be given for peptide products that require multi-dose as the use of preservatives can promote aggregation while preservative effectiveness can also be impacted by its interaction with the peptide. This presentation will focus on the reversible and irreversible fibril aggregates in peptide formulations. Biophysical characterization of aggregation and formulation will be discussed in detail. Formation of reversible aggregates and the impact of excipients especially preservatives will be discussed. For the ...


Conference Program, Samiul Amin, Paolo Arosio, Miguel Rodrigues Jul 2019

Conference Program, Samiul Amin, Paolo Arosio, Miguel Rodrigues

Biological and Pharmaceutical Complex Fluids III: Protein Self-Assembly, Rheology and Interfacial Properties

No abstract provided.


Resolving Intravoxel White Matter Structures In The Human Brain Using Regularized Regression And Clustering, Andrea Hart, Brianna Smith, Sean Smith, Elijah Sales, Jacqueline Hernandez-Camargo, Yarlin Mayor Garcia, Felix Zhan, Lori Griswold, Brian Dunkelberger, Michael R. Schwob, Sharang Chaudhry, Justin Zhan, Laxmi Gewali, Paul Oh Jul 2019

Resolving Intravoxel White Matter Structures In The Human Brain Using Regularized Regression And Clustering, Andrea Hart, Brianna Smith, Sean Smith, Elijah Sales, Jacqueline Hernandez-Camargo, Yarlin Mayor Garcia, Felix Zhan, Lori Griswold, Brian Dunkelberger, Michael R. Schwob, Sharang Chaudhry, Justin Zhan, Laxmi Gewali, Paul Oh

Computer Science Faculty Publications

The human brain is a complex system of neural tissue that varies significantly between individuals. Although the technology that delineates these neural pathways does not currently exist, medical imaging modalities, such as diffusion magnetic resonance imaging (dMRI), can be leveraged for mathematical identification. The purpose of this work is to develop a novel method employing machine learning techniques to determine intravoxel nerve number and direction from dMRI data. The method was tested on multiple synthetic datasets and showed promising estimation accuracy and robustness for multi-nerve systems under a variety of conditions, including highly noisy data and imprecision in parameter assumptions.


Microwave Assisted Sol-Gel Synthesis Of Silica-Spider Silk Composites, Abul Bashar Mohammad Giasuddin, David W. Britt Jul 2019

Microwave Assisted Sol-Gel Synthesis Of Silica-Spider Silk Composites, Abul Bashar Mohammad Giasuddin, David W. Britt

Biological Engineering Faculty Publications

This study introduces a simple and environmentally friendly method to synthesize silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy, and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane fluoro- or organo-side ...


Simulation Of A Continuum Tumor Model Using Distributed Computing., Dylan A Goodin Jul 2019

Simulation Of A Continuum Tumor Model Using Distributed Computing., Dylan A Goodin

Electronic Theses and Dissertations

Mathematical modeling aims to provide a theoretical framework for understanding tissue dynamics and for establishing treatment response for diseased tissues, such as tumors. Previously published continuum models have successfully represented idealized two-dimensional and three-dimensional tissue for short periods of time. A recently published continuum model of cancer increases model complexity and describes three-dimensional tissue that, due to the required complexity of the geometric multigrid solver, can only be feasibly applied to millimeter-scale simulations. Furthermore, the computational cost for such models has hindered their application in the laboratory and in the clinic. With computational demands greatly outpacing current openMP-based approaches on ...


Feasibility Study Of Intelligent Lvad Control For Optimal Heart Failure Therapy., John A. Karlen Iii Jul 2019

Feasibility Study Of Intelligent Lvad Control For Optimal Heart Failure Therapy., John A. Karlen Iii

Electronic Theses and Dissertations

Background: Left ventricular assist devices (LVAD) are operated at constant speeds (rpm), consequently, pump flow is passively determined by the pressure difference between the LV and aorta. Since the diastolic pressure gradient (~70 mmHg) is much larger than the systolic gradient (~10 mmHg), the majority of pump flow occurs during systole. This limitation results in sub-optimal LV volume unloading, LV washing, and diminished vascular pulsatility that may be associated with increased risk for clinically-significant adverse events, including stroke, bleeding, arteriovenous malformations, and aortic insufficiency. To address these clinical adverse events, an intelligent control strategy using pump speed modulation was developed ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar Jul 2019

Impedance-Based Microfluidic Platform For Quantitative Biology, Amin Mansoorifar

Mechanical Engineering Research Theses and Dissertations

Dielectric properties of biological cells are functions of cellular structure, content, state, and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize dielectric properties by measuring impedance data over a frequency range. This method has been widely used for various applications such as counting, sizing, and monitoring biological cells and particles. Recently, this method has been suggested to be utilized in various stages of the drug discovery process due to its low sample consumption and fast analysis time.

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, making DS measurements on ...


Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu Jul 2019

Computational Analysis And Design Optimization Of Convective Pcr Devices, Jung Il Shu

Mechanical & Aerospace Engineering Theses & Dissertations

Polymerase Chain Reaction (PCR) is a relatively novel technique to amplify a few copies of DNA to a detectable level. PCR has already become common in biomedical research, criminal forensics, molecular archaeology, and so on. Many have attempted to develop PCR devices in numerous types for the purpose of the lab-on-chip (LOC) or point-of-care (POC). To use PCR devices for POC lab testing, the price must be lower, and the performance should be comparable to the lab devices. For current practices with the existing methods, the price is pushed up higher partially due to too much dependence on numerous developmental ...


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Protein, Yi Zhu, Yizhi Xiao, Elizabeth Gillies, Walter L. Siqueira Jun 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Protein, Yi Zhu, Yizhi Xiao, Elizabeth Gillies, Walter L. Siqueira

Western Research Forum

Dental caries remains one of the most common chronic diseases worldwide. In previous studies, salivary proteins (e.g. histatin 3, statherin) have demonstrated biological functions including the inhibition of crystal growth, antibacterial activities, which are directly related to tooth homeostasis and prevention of dental caries. However, proteins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to protect proteins against enzymatic degradation at physiological salivary pH, in addition to swell selectively at lower pH conditions to facilitate the release of the encapsulated proteins, as major oral complications ...


The Effect Of Radial Head Hemiarthroplasty Stem Fit On Radiocapitellar Contact Mechanics: Is Loose Fit Better Than Rigidly Fixed?, Jakub Szmit, Graham J.W. King, James A. Johnson, G. Daniel G. Langohr Jun 2019

The Effect Of Radial Head Hemiarthroplasty Stem Fit On Radiocapitellar Contact Mechanics: Is Loose Fit Better Than Rigidly Fixed?, Jakub Szmit, Graham J.W. King, James A. Johnson, G. Daniel G. Langohr

Western Research Forum

Background/Methods: Radial head hemiarthroplasty is commonly employed to manage comminuted displaced fractures. With regards to implant fixation, current designs vary with some prostheses aiming to achieve a tight 'fixed' fit, and others utilizing a smooth stem with an over reamed 'loose' fit. The purpose of the present study was to evaluate the effect of radial head hemiarthroplasty stem fit on radiocapitellar contact using a finite element model which simulated both fixed (size-for-size) and loose (1, 2 & 3mm over reamed) stem fits.

Hypothesis: It was hypothesized that a loose stem fit would improve radiocapitellar contact mechanics, with increased contact area ...


Multifunctional Hybrid Sol-Gel Implant Coatings On Anodized Titanium Substrates To Improve Osseointegration And Antimicrobial Effectiveness, Zach Gouveia Jun 2019

Multifunctional Hybrid Sol-Gel Implant Coatings On Anodized Titanium Substrates To Improve Osseointegration And Antimicrobial Effectiveness, Zach Gouveia

Western Research Forum

To improve patient outcomes in orthopedic and dental implantation procedures, the development of multifunctional implant coatings that can inhibit microbial cell proliferation while promoting osseointegration have been sought out by clinicians. While recent developments in material science and cell biology have seen the development of such coatings, many proposed systems lack clinical translatability. For example, to reach the clinic, modern coating systems must be highly adherent to their substrate (to avoid delamination upon implantation), have sufficient wettability (to promote the fixation of cells), and facilitate the controlled and sustained release of antimicrobial factors (falling within the therapeutic window to prevent ...


Fibrinogen, Factor Xiii And Fibronectin: A Biophysical And Kinetic Characterization Of Their Interactions, Frank Fabian Jun 2019

Fibrinogen, Factor Xiii And Fibronectin: A Biophysical And Kinetic Characterization Of Their Interactions, Frank Fabian

Chemical & Biomolecular Engineering Theses, Dissertations, & Student Research

The development of recombinant-based liquid fibrin tissue sealants having enhanced hemostatic and wound healing properties will involve understanding as yet not well characterized interactions between fibrinogen, fibrin (Fbn) factor XIII, thrombin and fibronectin. We study these phenomena in the context of comparing plasma derived fibrinogen to recombinant fibrinogen (rFI) produced in the milk of transgenic cows. An abundance of purified γγ and γγ’ FI subspecies enables detailed study of γγ or γγ’ biomonomer and their respective Fbn biopolymer formation as having different substrate behaviors of activated plasma derived factor XIII (pFXIIIa2b2). High pressure size exclusion (HPSEC) and ...


Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman Jun 2019

Remote Navigation And Contact-Force Control Of Radiofrequency Ablation Catheters, Daniel Gelman

Electronic Thesis and Dissertation Repository

Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo ...


Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo Jun 2019

Inverted Cone Convolutional Neural Network For Deboning Mris, Oliver John Palumbo

Theses and Dissertations

Data plenitude is the power but also the bottleneck for data-driven approaches, including neural networks. In particular, Convolutional Neural Networks (CNNs) require an abundant database of training images to achieve a desired high accuracy. Current techniques employed for boosting small datasets are data augmentation and synthetic data generation, which suffer from computational complexity and imprecision compared to original datasets. In this thesis, we intercalate prior knowledge based on the temporal relation between the images in the third dimension. Specifically, we compute the gradient of subsequent images in the dataset to remove extraneous information and highlight subtle variations between the images ...


A Systems Biology Approach Toward Understanding Seed Composition In Soybean, Ling Li, Manhoi Hur, Joon-Yong Lee, Wenxu Zhou, Zhihong Song, Nick Ransom, Cumhur Yusuf Demirkale, Daniel S. Nettleton, Mark E. Westgate, Zebulun Wayne Arendsee, Vidya Vaancheeswaran Iyer, Jacqueline V. Shanks, Basil Nikolau, Eve Wurtele Jun 2019

A Systems Biology Approach Toward Understanding Seed Composition In Soybean, Ling Li, Manhoi Hur, Joon-Yong Lee, Wenxu Zhou, Zhihong Song, Nick Ransom, Cumhur Yusuf Demirkale, Daniel S. Nettleton, Mark E. Westgate, Zebulun Wayne Arendsee, Vidya Vaancheeswaran Iyer, Jacqueline V. Shanks, Basil Nikolau, Eve Wurtele

Dan Nettleton

Background

The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks.

Results

With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and ...


Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz Jun 2019

Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz

Dan Nettleton

Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis ...


Scale Optimization Of Milkguard Biosensor For Detecting E. Coli In Human Breast Milk, Jerard Roniel Del Rosario Madamba Jun 2019

Scale Optimization Of Milkguard Biosensor For Detecting E. Coli In Human Breast Milk, Jerard Roniel Del Rosario Madamba

Bioengineering Master's Theses

Milkguard is an alginate-based biosensor developed to detect E. coli in human breast milk via the metabolism of X-gal (5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside) by β-galactosidase. In order to deconvolute metabolic reproducibility from scaling laws, the commercial enzyme β-galactosidase was used to mimic the biological function of the bacterial lac operon. Downscaling was explored as an optimization of the biosensor design based on numerical solutions to Fickian-based diffusion models. The characterization of large capsules (d ≅ 3 mm) and atomized microcapsules (d ≅ 300 ± 60 μm) yielded size-specific Michaelis-Menten constants. Small capsules (Km = 3.6 x 10-4 M; Vmax ’’ = 1.2 x 10 ...


Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang Jun 2019

Unravel The Cellular Biophysical Dynamics Of Spatial Constraint-Induced Membrane Blebbing And 3d Migration Using A Microfluidic Platform And Data-Driven Mathematical Modeling, Yu Huang

Funded Research Records

No abstract provided.


Justrun - Social Gps Running Game, Riley Bergin, Maggie Cai, Simran Judge, Grace Ling Jun 2019

Justrun - Social Gps Running Game, Riley Bergin, Maggie Cai, Simran Judge, Grace Ling

Interdisciplinary Design Senior Theses

With advances in technology allowing people to live more sedentary lives, more and more people are struggling to live a healthy active lifestyle. In the efforts to combat unhealthy styles of living, we wish to introduce a mobile app that takes advantage of motivational game mechanics to motivate players will make go on runs regularly.


Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield Jun 2019

Epic: Examining Patch Impedance Characteristics, Shane Buck, Jyotsna Gopinath, Kyle Markfield

Interdisciplinary Design Senior Theses

In the United States, approximately one in 4 adults have at least one chronic illness, making up approximately 84% of US Healthcare Spending. Unfortunately, 50% of patients with chronic diseases do not take their medication properly and as such spend more money trying to get better – approximately $100 billion in annual preventable costs. One solution to this issue is digital medicine as it allows for the monitoring of patient medicine consumption.

Our industry partner has developed a three-part digital medicine system with the aim of allowing patients with chronic health issues to better reach their health goals through monitoring of ...


Challenges Of Erau’S First Suborbital Flight Aboard Blue Origin’S New Shepard M7 For The Cell Research Experiment In Microgravity (Crexim), Pedro Llanos, Kristina Andrijauskaite, Vijay V. Duraisamy, Francisco F. Pastrana, Erik Seedhouse, Sathya Gangadharan, Leonid Bunegin, Mariel Rico Jun 2019

Challenges Of Erau’S First Suborbital Flight Aboard Blue Origin’S New Shepard M7 For The Cell Research Experiment In Microgravity (Crexim), Pedro Llanos, Kristina Andrijauskaite, Vijay V. Duraisamy, Francisco F. Pastrana, Erik Seedhouse, Sathya Gangadharan, Leonid Bunegin, Mariel Rico

Pedro J. Llanos (www.AstronauticsLlanos.com)

Cell Research Experiment In Microgravity (CRExIM) was launched aboard Blue Origin’s New Shepard suborbital vehicle on Tuesday, December 12, 2017, from the West Texas Launch Site in Van Horn, Texas. One of the aims of this science experiment was to assess the effects of microgravity on murine T-cells during suborbital flight. These cells were placed in a NanoLab with a data logger that sensed the acceleration, temperature, and relative humidity during preflight, flight, and postflight operations. Some discrepancies in sensor measurement were noticed, and these errors were attributed partly to the difference in sampling rates and partly to the ...