Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 571 - 600 of 35990

Full-Text Articles in Physics

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy Aug 2023

Synthesis, Characterization, And Simulation Of Two-Dimensional Materials, Lawrence Hudy

Theses and Dissertations

ABSTRACT

SYNTHESIS, CHARACTERIZATION, AND SIMULATION OF TWO-DIMENSIONAL MATERIALS

by

Lawrence Hudy

The University of Wisconsin-Milwaukee, 2023Under the Supervision of Professor Michael Weinert

This dissertation focuses on my journey through many aspects of surface science leading to the first principles investigation of transition metal dichalcogenides studying the impact of defects, twist, and decreasing interlayer separation to probe their effect on the electronic properties of these materials. My journey started out learning many aspects of material science such as methods for material synthesis and characterization but later ended on simulation of material properties using density functional theory. In the first experiments, we …


The Seoul National University Agn Monitoring Project. Iv. Hα Reverberation Mapping Of Six Agns And The Hα Size–Luminosity Relation, Hojin Cho, Jong-Hak Woo, Shu Wang, Donghoon Son, Jaejin Shin, Suvendu Rakshit, Aaron J. Barth, Vardha N. Bennert, Elena Gallo, Edmund Hodges-Kluck, Tommaso Treu, Hyun-Ji Bae, Wanjin Cho, Adi Foord, Jaehyuk Geum, Yashashree Jadhav, Yiseul Jeon, Kyle M. Kabasares, Daeun Kang, Wonseok Kang, Changseok Kim, Donghwa Kim, Minjin Kim, Taewoo Kim, Huynh Anh N. Lee, Matthew A. Malkan, Amit Kumar Mandal, Daeseong Park, Hyun-Il Sung, Vivian U, Peter R. Williams Aug 2023

The Seoul National University Agn Monitoring Project. Iv. Hα Reverberation Mapping Of Six Agns And The Hα Size–Luminosity Relation, Hojin Cho, Jong-Hak Woo, Shu Wang, Donghoon Son, Jaejin Shin, Suvendu Rakshit, Aaron J. Barth, Vardha N. Bennert, Elena Gallo, Edmund Hodges-Kluck, Tommaso Treu, Hyun-Ji Bae, Wanjin Cho, Adi Foord, Jaehyuk Geum, Yashashree Jadhav, Yiseul Jeon, Kyle M. Kabasares, Daeun Kang, Wonseok Kang, Changseok Kim, Donghwa Kim, Minjin Kim, Taewoo Kim, Huynh Anh N. Lee, Matthew A. Malkan, Amit Kumar Mandal, Daeseong Park, Hyun-Il Sung, Vivian U, Peter R. Williams

Physics

The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the Hβ BLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the Hα BLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hα lags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, …


The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva Aug 2023

The Importance Of Contrast Sensitivity, Color Vision, And Electrophysiological Testing In Clinical And Occupational Settings, Frances Silva

Theses & Dissertations

Visual acuity (VA) is universally accepted as the gold standard metric for ocular vision and function. Contrast sensitivity (CS), color vision, and electrophysiological testing for clinical and occupational settings are warranted despite being deemed ancillary and minimally utilized by clinicians. These assessments provide essential information to subjectively and objectively quantify and obtain optimal functional vision. They are useful for baseline data and monitoring hereditary and progressive ocular conditions and cognitive function. The studies in this dissertation highlight the value of contrast sensitivity, color vision, and cone specific electrophysiological testing, as well as the novel metrics obtained with potential practical clinical …


A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez Aug 2023

A Dft Analysis And Simple Hamiltonian Modeling Of A Molecular System Employed For Experimental Evidence Of Quantum Teleportation, Pedro Ulises Medina Gonzalez

Open Access Theses & Dissertations

Radical ion pairs (RIPs) have been used to demonstrate quantum teleportation in molecular systems for applications in quantum information science. Covalent organic donor-acceptor (D-A) molecules can produce RIPs through photo-induced charge transfer and an additional radical (R) molecule makes quantum teleportation possible. We present the electronic structure and analyze charge transfer excited states of a recently studied [1] D-A-R molecular system using density functional theory. The distances between donor-acceptor and donor-radical are about 12.9 \AA $\,$ and 21.9 \AA, respectively. The excitation energies are calculated using the perturbative delta-SCF method and agree with other conventional excited-state methods and experimental reference …


Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage Aug 2023

Design Of A Resonant Optical Cavity For Imaging Magneto-Optically Active Thin Film Samples, Cody Robert Brelage

Graduate Theses - Physics and Optical Engineering

This document describes the design and fabrication of an optical resonator system to investigate magneto-optic properties of thin film samples. This system uses an open-air optical resonator to enable photons to make multiple passes through each thin film and thus increase the magnitude of the Faraday rotation that each sample imposes onto the light that exits the system. This system promises many future experiments to study the magneto-optic properties of thin film and nano-particle samples. Using an optical resonator to enhance Faraday rotation should enable an improved signal-to-noise ratio in taking measurements and images with a photodetector.


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson Aug 2023

Density Functional Theory Study Of Dopant Incorporation Into Gamma-Uo3, Nicholas James Wilson

Open Access Theses & Dissertations

Uranium trioxide (UO3) is a stable uranium oxide found throughout the nuclear fuel cycle. The γ-UO3 phase is of particular interest as the most stable at ambient conditions. As such, the γ-UO3 structure was selected for a theoretical investigation into the incorporation of metal dopants for nuclear intentional forensics applications. The two lattice types of this phase, tetragonal (I41/amd) and orthorhombic (Fddd), were investigated and found to be energetically identical, and as such the smaller tetragonal structure was selected for doping. Three transition metal dopants (Cr, Fe, and Ni) were incorporated into the structure interstitially and substitutionally at a total …


Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert Aug 2023

Super-Resolution Microscopy With Color Centers In Diamond, Forrest A. Hubert

Optical Science and Engineering ETDs

This dissertation explores the development and application of diamond color centers, specifically the silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers, in super-resolution microscopy and magnetic imaging techniques. It demonstrates the potential of SiV centers as photostable fluorophores in stimulated emission depletion (STED) microscopy, with a resolution of approximately 90 nm. The research also presents a method for nanoscale magnetic microscopy using NV centers by combining charge state depletion (CSD) microscopy with optically detected magnetic resonance (ODMR) to image magnetic fields produced by 30 nm iron-oxide nanoparticles. The individual magnetic feature width reaches ~100 nm while resolving magnetic field patterns from nanoparticles …


Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych Aug 2023

Two-Dimensional Crystal Phases Of Graphene Monoxide & Interaction Of Lithium With Graphene Monoxide, Danylo Radevych

Theses and Dissertations

This work explores the possible existence, properties, and potential applications of different polytypes of graphene monoxide (GmO) - two-dimensional crystalline monolayers composed of equal numbers of O and C atoms. In addition to previously experimentally discovered and theoretically modeled α phase, prediction and discovery of the second phase - β-GmO - is reported along with evaluation of six other possible phases. Structural parameters, electronic and mechanical properties of all the phases, including α-GmO, are determined using density functional calculations and compared. It is suggested that multiple phases of GmO can co-exist in the same composite, and developing a synthesis process …


Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma Aug 2023

Construction Of Zinc Oxide And Magnesium Oxide Heterostructures By Atomic Layer Deposition, Netra Sharma

Theses and Dissertations

Zinc oxide (ZnO) has gained wide technological interest due to its direct bandgap of ~3.37 eV and high exciton binding energy of ~60 meV and has exhibited promise for numerous electronics and opto-electronics applications. ZnO can also be alloyed with materials like magnesium oxide (MgO) to tailor the bandgap. Such heterostructures (Zn, Mg)O can be used in optoelectronic devices like quantum well lasers, photodetectors, etc.In this work, we studied the physical properties of zinc oxide (ZnO), magnesium oxide (MgO) and the heterostructures of zinc and magnesium oxide (Zn,Mg)O grown by atomic layer deposition (ALD) using a homemade viscous flow type …


Topological Superconductors And Dark Matter Searches In Gravitational Wave Interferometers, Han Gyeol Suh Aug 2023

Topological Superconductors And Dark Matter Searches In Gravitational Wave Interferometers, Han Gyeol Suh

Theses and Dissertations

This work is comprised of research in two areas: superconductors and gravitational waves.

Superconductors have led to novel fundamental discoveries, including new topological states. These states are robust, in that they are not altered by common changes to their environment. Here, I will introduce three studies focused on topological properties of various superconductors. First, newly proposed even-parity superconducting state in Sr$_2$RuO$_4$ introduces the emergence of topologically protected Bogoliubov Fermi surfaces. Next, I will discuss topological bands and odd-parity superconductivity in UTe$_2$, which suggest Weyl nodes and their potential topological properties. Lastly, anomalous pseudospin in non-symmorphic materials shows different symmetry properties …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


The Derivation Of Sodium Density In The Mesosphere And Lower Thermosphere From The Na Lidar Photon Counting Profiles, Xiaoqi Xi Aug 2023

The Derivation Of Sodium Density In The Mesosphere And Lower Thermosphere From The Na Lidar Photon Counting Profiles, Xiaoqi Xi

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Derivation of Sodium (Na) number density from the Na lidar observations requires the in situ temperature and wind information because the absorption cross-section of the Na atom is a function of these dynamic parameters. The Na number density above ~ 110 km altitude was difficult to derive with the conventional algorithm, however. The standard output of the Na number density that utilizes the lidar-measured wind and temperature information falls short at ~ 110 km altitude and above due to the relatively large measurement uncertainties in the two critical parameters (low signal-to-noise ratio). Therefore, an innovative algorithm that may drive the …


Signatures Of Black Holes, Alexandra B. Chanson Aug 2023

Signatures Of Black Holes, Alexandra B. Chanson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this defense I will describes three approaches to learn more about the relationship between the dynamics of black-holes and the distinctive signatures of a black hole systems: infinitesimal changes in the black hole background producing field excitations relating new fundamental black hole thermodynamic relations, mechanisms powering relativistic black hole jets and spontaneous symmetry breaking in five space-time dimensions, and physical signatures of black hole event horizons as conformal field theory duals (in both d=4,5 dimensional axisymmetric spacetimes).


Precise Determination Of Charge Distributions In Electron Irradiated Polymers Via Pulsed Electroacoustic Measurements With Applications To Spacecraft Charging, Zachary Gibson Aug 2023

Precise Determination Of Charge Distributions In Electron Irradiated Polymers Via Pulsed Electroacoustic Measurements With Applications To Spacecraft Charging, Zachary Gibson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Understanding how charge builds up and moves around in materials that are highly insulating, such as dielectrics, is important for many applications from power transmission to spacecraft charging. The leading cause of issues in spacecraft due to interactions with the space environment is spacecraft charging. That is, the accumulation of charge on insulating materials leads to arcing and sparking aboard the spacecraft. The most critical charging occurs due to electrons in a particular energy range of 10-50 keV. Electrons with these energies can travel 1’s to 10’s of microns into relevant materials. To measure where the charge is embedded and …


The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley Aug 2023

The Time-Dependent Ionospheric Model Using A Tec-Driven Servo: An Investigation Of The Capabilities And Limitations, Jenny Rebecca Whiteley

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The ionosphere is a region of the atmosphere with a high density of electrons. These electrons affect the behavior of any electromagnetic wave that passes through the ionosphere. Communication and geolocation systems, such as traditional radio and Global Positioning Systems, depend on emitted electromagnetic signals being picked up by a receiver. The presence of the ionosphere affects the behavior of the signal and the quality of the service. Hence, the interactions between electromagnetic waves and the ionosphere provide a major motivation to understand, research, and successfully model and predict the ionosphere and its physical phenomena. This study focused on determining …


Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron Aug 2023

Photon Counting Statistics Of Classical And Quantum Light Sources, Luis Felipe Morales Bultron

Graduate Theses and Dissertations

Multiple sources of light, including coherent light, thermal light, light from a degenerate parametric oscillation and resonance fluorescence from a two level coherently driven atom are considered for the analysis of their wait time statistics. We include the second order normalized correlation function and Mandel's Q parameter for brief discussion. A general framework to analyze the generalized conditional and unconditional wait time distributions is also obtained in order to understand the photo-count statistics of the light sources included in this work. Average and variance of wait times with respect to both unconditional and conditional wait time distribution are also obtained …


Etching Of Silicon Wafer In Preparation Of Graphene Transfer, Floyd T. Lancaster Iii Aug 2023

Etching Of Silicon Wafer In Preparation Of Graphene Transfer, Floyd T. Lancaster Iii

Graduate Theses and Dissertations

Following the research done on graphene looking at its unique properties it has been found that graphene can be used as a varying capacitor. What has been observed is that graphene acts almost like a torrential ocean constantly fluctuating. What we use is a silicon wafer with multiple etched layers to create a stable platform on which to capture this energy. In this paper we will discuss the general setup and step-by-step procedures required to create a functioning variable capacitor out of graphene, gold, and Silicon dioxide (SiO2) substrate. Electron Beam Lithography (EBL) is used to create the initial design …


Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage Aug 2023

Exploring Skyrmions Dynamics And Structure Using Neutron Scattering, W-L-Namila Chandula Liyanage

Doctoral Dissertations

Magnetic skyrmions are topologically protected chiral spin textures with great potential for next-generation consumer technologies. These magnetic structures can be described as spins continuously wrapping into a closed coplanar loop, featuring a core and fencing perimeter with opposite out-of-plane orientations. While conventional depictions of magnetic skyrmions use a two-dimensional projection, recent research underscores the importance of their three-dimensional structure in determining their topology and stability. Magnetic skyrmions typically emerge just below the curie temperature of a magnetic material, creating what is known as a skyrmion pocket. In most materials the stability pocket is at low temperatures and finite fields, however …


Self-Calibrating Optical Galaxy Cluster Selection Bias Using Cluster, Galaxy, And Shear Cross-Correlations, Chenxiao Zeng, Andrés N. Salcedo, Hao-Yi Wu, Christopher M. Hirata Aug 2023

Self-Calibrating Optical Galaxy Cluster Selection Bias Using Cluster, Galaxy, And Shear Cross-Correlations, Chenxiao Zeng, Andrés N. Salcedo, Hao-Yi Wu, Christopher M. Hirata

Physics Faculty Publications and Presentations

The clustering signals of galaxy clusters are powerful tools for self-calibrating the mass–observable relation and are complementary to cluster abundance and lensing. In this work, we explore the possibility of combining three correlation functions – cluster lensing, the cluster–galaxy cross-correlation function, and the galaxy autocorrelation function – to self-calibrate optical cluster selection bias, the boosted clustering and lensing signals in a richness-selected sample mainly caused by projection effects. We develop mock catalogues of redMaGiC-like galaxies and redMaPPer-like clusters by applying halo occupation distribution models to N-body simulations and using counts-in-cylinders around massive haloes as a richness proxy. In addition …


Modelling Galaxy Cluster Triaxiality In Stacked Cluster Weak Lensing Analyses, Hao-Yi Wu Aug 2023

Modelling Galaxy Cluster Triaxiality In Stacked Cluster Weak Lensing Analyses, Hao-Yi Wu

Physics Faculty Publications and Presentations

Counts of galaxy clusters offer a high-precision probe of cosmology, but control of systematic errors will determine the accuracy of this measurement. Using Buzzard simulations, we quantify one such systematic, the triaxiality distribution of clusters identified with the redMaPPer optical cluster finding algorithm, which was used in the Dark Energy Survey Year-1 (DES Y1) cluster cosmology analysis. We test whether redMaPPer selection biases the clusters’ shape and orientation and find that it only biases orientation, preferentially selecting clusters with their major axes oriented along the line of sight. Modelling the richness–mass relation as log-linear, we find that the log-richness amplitude …


Azimuthal Correlations Within Exclusive Dijets With Large Momentum Transfer In Photon-Lead Collisions, A. Tumasyan Aug 2023

Azimuthal Correlations Within Exclusive Dijets With Large Momentum Transfer In Photon-Lead Collisions, A. Tumasyan

Department of Physics and Astronomy: Faculty Publications

The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at √sNN = 5.02 TeV, corresponding to an integrated luminosity of 0.38 nb−1, collected with …


Circuitry And Semiconductor Studies For Making A Graphene Energy Harvesting Device, Ferdinand Harerimana Aug 2023

Circuitry And Semiconductor Studies For Making A Graphene Energy Harvesting Device, Ferdinand Harerimana

Graduate Theses and Dissertations

Freestanding graphene has constantly moving ripples. Due to its extreme flexibility, graphene responds to ambient vibrations and changes its curvature from concave to convex and vice versa. During a ripple inversion 10,000 atoms move together, suggesting the presence of kinetic energy which can be harvested. In this study we present circuitry and semiconductor studies for harvesting energy from graphene vibrations. The goal of the study is to develop a graphene energy harvesting chip which can serve as a battery replacement in low power electronics. In the first study we determined the best circuit for harvesting vibrational low power. To do …


Fem Simulations Of Plasmon Field Enhancement In Gold Nanoparticle Dimers And Gold Nanoparticle-Nanorod Dimers, Edward J. Lipchus Aug 2023

Fem Simulations Of Plasmon Field Enhancement In Gold Nanoparticle Dimers And Gold Nanoparticle-Nanorod Dimers, Edward J. Lipchus

Graduate Masters Theses

Plasmon resonance refers to the collective oscillation of free electrons in a nanomaterial in response to an incident electromagnetic field. When two plasmonic nanoparticles are placed close together, their localized surface plasmon resonances can couple and interact. The resulting plasmonic coupling leads to the formation of new plasmonic modes in the dimer system, significantly enhancing the electromagnetic fields in the vicinity of the nanoparticles, with various interesting and potentially useful applications. This thesis investigates the optical field enhancement arising from gold nanoparticle dimers in an aqueous dielectric medium, using the Finite Element Method simulation software COMSOL Multiphysics. The simulations provide …


High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper Aug 2023

High-Power Laser Cooling And Temperature-Dependent Fluorescence Studies Of Ytterbium Doped Silica, Brian Topper

Optical Science and Engineering ETDs

Experimental observation of optical refrigeration using ytterbium doped silica glass in recent years has created a new solution for heat mitigation in high-power laser systems, nonlinear fiber experiments, integrated photonics, and precision metrology. Current efforts of different groups focus on compositional optimization, fiber fabrication, and investigating how much silica can be cooled with a laser. At the start of this work, the best effort in laser cooling ytterbium doped silica saw cooling by 6 K from room temperature. This dissertation follows the experimental efforts that culminated in the increase of this initial record by one order of magnitude. Comprehensive spectroscopic …


Magnetic-Field-Driven Director Configuration Transitions In Radial Nematic Liquid Crystal Droplets, S. Ettinger, C. G. Slaughter, S. H. Parra, J. M. Kikkawa, Peter J. Collings, A. G. Yodh Aug 2023

Magnetic-Field-Driven Director Configuration Transitions In Radial Nematic Liquid Crystal Droplets, S. Ettinger, C. G. Slaughter, S. H. Parra, J. M. Kikkawa, Peter J. Collings, A. G. Yodh

Physics & Astronomy Faculty Works

We study the director configurations of nematic liquid crystal (NLC) droplets with homeotropic anchoring in a magnetic field and report observation of a magnetic-field-driven transition from a deformed radial to an axial-with-defect configuration. Magnetic-field-induced transitions in NLC droplets differ fundamentally from the traditional planar Freedericksz transition due to the spherical droplet geometry and resulting topological defect. This transition has been studied theoretically, but the director configurations and mechanism of defect evolution in an applied magnetic field have yet to be observed experimentally. To this end, we combine polarized optical microscopy with a variable electromagnet (≤ 1 T) for continuous observation …


Growth And Emergent Functionalities Of Oxide Thin Films Utilizing Interface Engineering, Detian Yang Aug 2023

Growth And Emergent Functionalities Of Oxide Thin Films Utilizing Interface Engineering, Detian Yang

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Complex oxide interfaces have offered intriguing novel emergent phenomena and multiple functionalities through interfacial reconstructions of spin, orbital, charge, and lattice degrees of freedom. Interface engineering via manipulating interfacial interaction, defects and multiple interfacial quantum charges and orders constitutes the essential method and technique to achieve desired functionalities in oxide heterostructures. In this thesis, shown are two examples of utilizing interfacial reconstruction and interfacial strain engineering to achieve intrinsic exchange bias and realize epitaxial growth of mixed-valence hexagonal manganite thin films, respectively.

Firstly, we demonstrated intrinsic exchange bias induced by interfacial reconstruction in NixCoyFe3-x-yO …


Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage Aug 2023

Intercalation And High-Pressure Investigations Of Black Arsenic Phosphorus: Unraveling Material Transformations., Dinushika Vithanage

Electronic Theses and Dissertations

Black arsenic phosphorus (b-AsyP1-y) alloys have emerged as intriguing materials within the realm of two-dimensional (2D) materials, following the discovery of black phosphorus (BP). These alloys possess capability to overcome major limitations of BP and exhibit potential for tunability and enhancement of properties making them promising materials for a wide range of applications, including lithium-ion batteries. Inspired by the intriguing findings obtained for BP, this research focuses on understanding the structural modifications that can be achieved in b-AsyP1-y alloys through the application of intercalation and high pressure. The initial phase of our investigation …


Doubly Differential Ionization In Proton-Helium Collisions At Intermediate Energies: Energy Distribution Of Emitted Electrons As A Function Of Scattered-Projectile Angle, K. H. Spicer, C. T. Plowman, Michael Schulz, A. S. Kadyrov Aug 2023

Doubly Differential Ionization In Proton-Helium Collisions At Intermediate Energies: Energy Distribution Of Emitted Electrons As A Function Of Scattered-Projectile Angle, K. H. Spicer, C. T. Plowman, Michael Schulz, A. S. Kadyrov

Physics Faculty Research & Creative Works

Differential studies of the proton-helium scattering problem using the two-center wave-packet convergent close-coupling approach is extended to the calculation of the ionization cross section differential in the electron emission energy and the projectile scattering angle. The results obtained using the correlated two-electron and effective one-electron methods are in reasonably good agreement with experiment. While the shape of the doubly differential cross section generally agrees with the results of the experiment, at some emission energies its magnitude does not. This appears consistent with similar disagreement seen in the singly differential cross section at the same emission energies.


Quantum Electrodynamic Corrections To Cyclotron States In A Penning Trap, Ulrich D. Jentschura, Christopher Moore Aug 2023

Quantum Electrodynamic Corrections To Cyclotron States In A Penning Trap, Ulrich D. Jentschura, Christopher Moore

Physics Faculty Research & Creative Works

We analyze the leading and higher-order quantum electrodynamic corrections to the energy levels for a single electron bound in a Penning trap, including the Bethe logarithm correction due to virtual excitations of the reference quantum cyclotron state. The effective coupling parameter αc in the Penning trap is identified as the square root of the ratio of the cyclotron frequency, converted to an energy via multiplication by the Planck constant, to the electron rest mass energy. We find a large, state-independent, logarithmic one-loop self-energy correction of order α αc4mc2ln(αc-2), where m is the …