Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 3012

Full-Text Articles in Physics

Obituary: Anthony Starace (1945-2019) Sep 2019

Obituary: Anthony Starace (1945-2019)

Anthony F. Starace Publications

Anthony Starace, George Holmes University Professor of physics, died Sept. 5 from complications related to pancreatitis. He was 74.

Starace was born July 24, 1945, in the Queens borough of New York City. He graduated from Stuyvesant High School and earned his bachelor’s degree from Columbia University in 1966 before moving west to the University of Chicago, where he earned his doctorate under adviser Ugo Fano in 1971. It was in Chicago that he met Katherine Fritz of Beatrice, Nebraska, his wife of 51 years.

Following a postdoctoral appointment at Imperial College London, Starace moved to Lincoln as an ...


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin Jul 2019

Search For Resonant Double Higgs Production With Bbzz Decays In The Bbℓℓνν Final State In Pp Collisions At √S = 13 Tev, Rami Kamalieddin

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments, most of the quantum mechanical properties that describe the long-awaited Higgs boson have been measured. Due to the outstanding work of the LHC, over a hundred of fb−1 of proton collisions data have been delivered to both experiments. Finally, it became sensible for analyses teams to start working with a very low cross section processes involving the Higgs boson, e.g., a recent success in observing ttH and VHbb processes. One of the main remaining untouched topics is a double Higgs boson production. However ...


Voltage Controlled Magnetism In Cr2o3 Based All-Thin-Film Systems, Junlei Wang, Will Echtenkamp, Ather Mahmood, Christian Binek May 2019

Voltage Controlled Magnetism In Cr2o3 Based All-Thin-Film Systems, Junlei Wang, Will Echtenkamp, Ather Mahmood, Christian Binek

Christian Binek Publications

Voltage-control of exchange biases through active selection of distinct domain states of the magnetoelectric and antiferromagnetic pinning layer is demonstrated for Cr2O3/CoPd heterostructures. Progress and obstacles towards an isothermal switching of exchange bias are discussed. An alternative approach avoiding exchange bias for voltage-controlled memory exploits boundary magnetization at the surface of Cr2O3 as voltage-controlled state variable. We demonstrate readout and switching of boundary magnetization in ultra-thin Cr2O3/Pt Hall bar devices where reversal of boundary magnetization is achieved via magnetoelectric annealing with simultaneously applied ±0.5 V and 400 mT electric and magnetic fields.


Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan May 2019

Performance Of Plastic Electron Optics Components Fabricated Using A 3d Printer, Phillip Wiebe, Peter Beierle, Hua-Chieh Shao, Bret Gergely, Anthony F. Starace, Herman Batelaan

Anthony F. Starace Publications

We show images produced by an electron beam deflector, a quadrupole lens and a einzel lens fabricated from conducting and non-conducting plastic using a 3D printer. Despite the difficulties associated with the use of plastics in vacuum, such as outgassing, poor conductivity, and print defects, the devices were used successfully in vacuum to steer, stretch and focus electron beams to millimeter diameters. Simulations indicate that much smaller focus spot sizes might be possible for such 3D-printed plastic electron lenses taking into account some possible surface defects. This work was motivated by our need to place electron optical components in difficult-to-access ...


Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace May 2019

Analytic Generalized Description Of A Perturbative Nonparaxial Elegant Laguerre-Gaussian Phasor For Ultrashort Pulses In The Time Domain, Andrew Vikartofsky, Ethan C. Jahns, Anthony F. Starace

Anthony F. Starace Publications

An analytic expression for a polychromatic phasor representing an arbitrarily short elegant Laguerre-Gauss (eLG) laser pulse of any spot size and LG mode is presented in the time domain as a nonrecursive, closed-form perturbative expansion valid to any order of perturbative correction. This phasor enables the calculation of the complex electromagnetic fields for such beams without requiring the evaluation of any Fourier integrals. It is thus straightforward to implement in analytical or numerical applications involving eLG pulses.


Space-Charge Limited Conduction In Epitaxial Chromia Films Grown On Elemental And Oxide-Based Metallic Substrates, C.-P. Kwan, Mike Street, Ather Mahmood, Will Echtenkamp, M. Randle, K. He, J. Nathawat, N. Arabchigavkani, B. Barut, S. Yin, R. Dixit, Uttam Singisetti, Christian Binek, J. P. Bird May 2019

Space-Charge Limited Conduction In Epitaxial Chromia Films Grown On Elemental And Oxide-Based Metallic Substrates, C.-P. Kwan, Mike Street, Ather Mahmood, Will Echtenkamp, M. Randle, K. He, J. Nathawat, N. Arabchigavkani, B. Barut, S. Yin, R. Dixit, Uttam Singisetti, Christian Binek, J. P. Bird

Christian Binek Publications

We study temperature dependent (200 – 400 K) dielectric current leakage in high-quality, epitaxial chromia films, synthesized on various conductive substrates (Pd, Pt and V2O3). We find that trap-assisted space-charge limited conduction is the dominant source of electrical leakage in the films, and that the density and distribution of charge traps within them is strongly dependent upon the choice of the underlying substrate. Pd-based chromia is found to exhibit leakage consistent with the presence of deep, discrete traps, a characteristic that is related to the known properties of twinning defects in the material. The Pt- and V2O3-based films, in contrast, show ...


Analytic Description Of High-Order Harmonic Generation In The Adiabatic Limit With Application To An Initial S State In An Intense Bicircular Laser Pulse, M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, Anthony F. Starace May 2019

Analytic Description Of High-Order Harmonic Generation In The Adiabatic Limit With Application To An Initial S State In An Intense Bicircular Laser Pulse, M. V. Frolov, N. L. Manakov, A. A. Minina, A. A. Silaev, N. V. Vvedenskii, M. Yu. Ivanov, Anthony F. Starace

Anthony F. Starace Publications

An analytic description of high-order harmonic generation (HHG) is proposed in the adiabatic (low-frequency) limit for an initial s state and a laser field having an arbitrary wave form. The approach is based on the two-state time-dependent effective range theory and is extended to the case of neutral atoms and positively charged ions by introducing ad hoc the Coulomb corrections for HHG. The resulting closed analytical form for the HHG amplitude is discussed in terms of real classical trajectories. The accuracy of the results of our analytic model is demonstrated by comparison with numerical solutions of the time-dependent Schrödinger equation ...


Unbounded Derivations Of C*-Algebras And The Heisenberg Commutation Relation, Lara M. Ismert May 2019

Unbounded Derivations Of C*-Algebras And The Heisenberg Commutation Relation, Lara M. Ismert

Dissertations, Theses, and Student Research Papers in Mathematics

This dissertation investigates the properties of unbounded derivations on C*-algebras, namely the density of their analytic vectors and a property we refer to as "kernel stabilization." We focus on a weakly-defined derivation δD which formalizes commutators involving unbounded self-adjoint operators on a Hilbert space. These commutators naturally arise in quantum mechanics, as we briefly describe in the introduction.

A first application of kernel stabilization for δD shows that a large class of abstract derivations on unbounded C*-algebras, defined by O. Bratteli and D. Robinson, also have kernel stabilization. A second application of kernel stabilization provides a ...


Free Electron Sources And Diffraction In Time, Eric R. Jones May 2019

Free Electron Sources And Diffraction In Time, Eric R. Jones

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

The quantum revolution of the last century advanced synergistically with technology, for example, with control of the temporal and spatial coherence, and the polarization state of light. Indeed, experimental confirmation of the quirks of quantum theory, as originally highlighted by Einstein, Podolsky, and Rosen, through Bohm, and then Bell, have been performed with photons, i.e., electromagnetic wave packets prepared in the same quantum states. Experimental tests of quantum mechanics with matter wave packets have been limited due to challenges in preparing all of the packets with similar quantum states. While great strides have been made for trapped atoms and ...


Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal Apr 2019

Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The anomalous Hall effect (AHE) is a well-known fundamental property of ferromagnetic metals, commonly associated with the presence of a net magnetization. Recently, an AHE has been discovered in noncollinear antiferromagnetic (AFM) metals. Driven by nonvanishing Berry curvature of AFM materials with certain magnetic space-group symmetry, anomalous Hall conductivity (AHC) is very sensitive to the specific type of magnetic ordering. Here, we investigate the appearance of AHC in antiperovskite materials family ANMn3 (A = Ga, Sn, Ni), where different types of noncollinear magnetic ordering can emerge. Using symmetry analyses and first-principles density-functional theory calculations, we show that with almost identical ...


Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky Apr 2019

Perturbative Generalization Of Nonparaxial Ultrashort Tightly-Focused Elegant Laguerre-Gaussian Beams, Andrew M. Vikartofsky

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (eLG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. The time-domain representation of this model is presented as a non-recursive closed-form expression to any order ...


Valley-Dependent Lorentz Force And Aharonov-Bohm Phase In Strained Graphene P-N Junction, Sanjay Prabhakar, Rabindra Nepal, Roderick Melnik, Alexey Kovalev Mar 2019

Valley-Dependent Lorentz Force And Aharonov-Bohm Phase In Strained Graphene P-N Junction, Sanjay Prabhakar, Rabindra Nepal, Roderick Melnik, Alexey Kovalev

Faculty Publications, Department of Physics and Astronomy

Veselago lens focusing in graphene p−n junction is promising for realizations of new generation electron optics devices. However, the effect of the strain-induced Aharonov-Bohm interference in a p−n junction has not been discussed before. We provide an experimentally feasible setup based on the Veselago lens in which the presence of strain can result in both the valley-dependent Lorentz force and Aharonov-Bohm interference. In particular, by employing the Green's function and tight-binding methods, we study the strain induced by dislocations and line defects in a p−n junction and show how the resulting Aharonov-Bohm phase and interference can ...


Violation Of Centrosymmetry In Time-Resolved Coherent X-Ray Diffraction From Rovibrational States Of Diatomic Molecules, Hua-Chieh Shao, Anthony F. Starace Mar 2019

Violation Of Centrosymmetry In Time-Resolved Coherent X-Ray Diffraction From Rovibrational States Of Diatomic Molecules, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Owing to increasing applications of time-resolved coherent x-ray scattering for the investigation of molecular reaction dynamics, we develop a theoretical model for time-dependent x-ray diffraction from molecular and/or electronic motion in molecules. Our model shows that the violation of centrosymmetry (VOC) is a general phenomenon in time-resolved diffraction patterns. We employ our theoretical model to illustrate the VOC in time-resolved coherent x-ray diffraction from two oriented diatomic molecules undergoing rovibrational motion: lithium hydride (LiD) and hydrogen (HD). Our simulations show asymmetric x-ray diffraction images that reflect the directions of the molecular motions.


Ordered Growth Of Ferroelectric Diisopropylammonium-Bromide Microcrystals Through Slotted-Jar Growth And Lithographically Controlled Wetting, Andrew J. Fanning Mar 2019

Ordered Growth Of Ferroelectric Diisopropylammonium-Bromide Microcrystals Through Slotted-Jar Growth And Lithographically Controlled Wetting, Andrew J. Fanning

Honors Theses, University of Nebraska-Lincoln

Organic molecular ferroelectrics show promise for industry applications because of their switchable high spontaneous polarization value, mechanical flexibility, and cost-effectiveness. Since these materials, namely diisopropylammonium bromide, exhibit ferroelectricity only in tandem with a high level of crystallinity, novel methods must be explored in order to ensure that high levels of crystallinity are achieved. This project seeked to perfect the methods of Slotted Jar Growth and Lithographically Controlled Wetting (LCW). Slotted Jar Growth uses temperature driven solution saturation to grow crystals on a desired substrate. LCW drives the growth of microscopic diisopropylammonium bromide crystals, in their ferroelectric phase, through the use ...


Dirac Nodal Line Metal For Topological Antiferromagnetic Spintronics, Ding-Fu Shao, Gautam Gurung, Shu-Hui Zhang, Evgeny Y. Tsymbal Feb 2019

Dirac Nodal Line Metal For Topological Antiferromagnetic Spintronics, Ding-Fu Shao, Gautam Gurung, Shu-Hui Zhang, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the N´eel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered N´eel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd2 allows the electrical control of the Dirac nodal line by the N´eel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the N´eel ...


Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal Feb 2019

Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Using density-functional calculations, we predict the emergence of electrically reversible magnetization at the interface between antiferromagnetic noncollinear antiperovskite GaNMn3 and ferroelectric perovskite BaTiO3. We find that Mn magnetic moments are enhanced and reoriented at the GaNMn3/ATiO3 (001) (A = Sr and Ba) interface, resulting in a sizable net magnetization along the [110] direction. This magnetization is reversed with ferroelectric polarization of BaTiO3 through ∼20◦ rotation of the noncollinear magnetic moments. The effect is driven by ferroelectric modulation of the antiferromagnetic exchange coupling between the interfacial Mn atoms mediated by the Mn-3d orbital population. Our results open opportunities for controlling the ...


Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong Feb 2019

Ferroelectric Polarization Control Of Magnetic Anisotropy In Pbzr0.2ti0.8o3/La0.8sr0.2mno3 Heterostructures, Anil Rajapitamahuni, L. L. Tao, Y. Hao, Jingfeng Song, Xiaoshan Xu, Evgeny Y. Tsymbal, Xia Hong

Evgeny Tsymbal Publications

The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial PbZr0.2Ti0.8O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) heterostructures grown on (001) SrTiO3 substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles ...


Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert Feb 2019

Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

Christian Binek Publications

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K ...


Enhanced Flexoelectricity At Reduced Dimensions Revealed By Mechanically Tunable Quantum Tunnelling, Saikat Das, Bo Wang, Tula R. Paudel, Sung Min Park, Evgeny Y. Tsymbal, Long-Qing Chen, Daesu Lee, Tae Won Noh Feb 2019

Enhanced Flexoelectricity At Reduced Dimensions Revealed By Mechanically Tunable Quantum Tunnelling, Saikat Das, Bo Wang, Tula R. Paudel, Sung Min Park, Evgeny Y. Tsymbal, Long-Qing Chen, Daesu Lee, Tae Won Noh

Evgeny Tsymbal Publications

Flexoelectricity is a universal electromechanical coupling effect whereby all dielectric materials polarise in response to strain gradients. In particular, nanoscale flexoelectricity promises exotic phenomena and functions, but reliable characterisation methods are required to unlock its potential. Here, we report anomalous mechanical control of quantum tunnelling that allows for characterising nanoscale flexoelectricity. By applying strain gradients with an atomic force microscope tip, we systematically polarise an ultrathin film of otherwise nonpolar SrTiO3, and simultaneously measure tunnel current across it. The measured tunnel current exhibits critical behaviour as a function of strain gradients, which manifests large modification of tunnel barrier profiles ...


Nonvolatile Voltage Controlled Molecular Spin State Switching, G. Hao, A. Mosey, X. Jiang, A. J. Yost, K. R. Sapkota, G. T. Wang, X. Zhang, J. Zhang, A. T. N'Diaye, R. Cheng, X. Xu, P. A. Dowben Jan 2019

Nonvolatile Voltage Controlled Molecular Spin State Switching, G. Hao, A. Mosey, X. Jiang, A. J. Yost, K. R. Sapkota, G. T. Wang, X. Zhang, J. Zhang, A. T. N'Diaye, R. Cheng, X. Xu, P. A. Dowben

Xiaoshan Xu Papers

Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H2B(pz)2}2(bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film is adjacent to a molecular ferroelectric. The adjacent molecular ferroelectric, either polyvinylidene fluoride hexafluoropropylene or croconic acid (C5H2O5), appears to lock the spin crossover [Fe{H2B(pz)2}2(bipy)] molecular complex largely in the low or high spin state depending on the direction of ferroelectric polarization. In both a planar two terminal diode structure and ...


Noncollinear Spin Structure In Fe3+Xco3−Xti2 (X = 0, 2, 3) From Neutron Diffraction, Haohan Wang, Balamurugan Balamurugan, Rabindra Pahari, Ralph Skomski, Yaohua Liu, Ashfia Huq, D. J. Sellmyer, Xiaoshan Xu Jan 2019

Noncollinear Spin Structure In Fe3+Xco3−Xti2 (X = 0, 2, 3) From Neutron Diffraction, Haohan Wang, Balamurugan Balamurugan, Rabindra Pahari, Ralph Skomski, Yaohua Liu, Ashfia Huq, D. J. Sellmyer, Xiaoshan Xu

Xiaoshan Xu Papers

Neutron powder diffraction has been used to investigate the spin structure of the hard-magnetic alloy Fe3+xCo3−xTi2 (x = 0, 2, 3). The materials are produced by rapid quenching from the melt, they possess a hexagonal crystal structure, and they are nanocrystalline with crystallite sizes D of the order of 40 nm. Projections of the magnetic moment onto both the crystalline c axis and the basal plane were observed. The corresponding misalignment angle exhibits a nonlinear decrease with x, which we explain as a micromagnetic effect caused by Fe-Co site disorder. The underlying physics is ...


Unusual Perpendicular Anisotropy In Co2Tisi Films, Yunlong Jin, Shah R. Valloppilly, Parashu R. Kharel, Rohit Pathak, Arti Kashyap, Ralph Skomski, David J. Sellmyer Jan 2019

Unusual Perpendicular Anisotropy In Co2Tisi Films, Yunlong Jin, Shah R. Valloppilly, Parashu R. Kharel, Rohit Pathak, Arti Kashyap, Ralph Skomski, David J. Sellmyer

David Sellmyer Publications

Thin films of Co2TiSi on MgO are investigated experimentally and theoretically. The films were produced by magnetron sputtering on MgO(001) and have a thickness of about 100 nm. As bulk Co2TiSi, they crystallize in the normal cubic Heusler (L21) structure, but the films are slightly distorted (c/a = 1.0014) and contain some antisite disorder. The films exhibit a robust perpendicular anisotropy of 0.5 MJ m3. This result is surprising for several reasons. First, surface and interface anisotropies are too small to explain perpendicular anisotropy in such rather thick films. Second, Co ...


Boundary Twists, Instabilities, And Creation Of Skyrmions And Antiskyrmions, Aldo Raeliarijaona, Rabindra Nepal, Alexey Kovalev Dec 2018

Boundary Twists, Instabilities, And Creation Of Skyrmions And Antiskyrmions, Aldo Raeliarijaona, Rabindra Nepal, Alexey Kovalev

Faculty Publications, Department of Physics and Astronomy

We formulate and study the general boundary conditions dictating the magnetization profile in the vicinity of an interface between magnets with dissimilar properties. Boundary twists in the vicinity of an edge due to Dzyaloshinskii-Moriya interactions have been first discussed by Wilson et al. [Phys. Rev. B 88, 214420 (2013)] and by Rohart and Thiaville [Phys. Rev. B 88, 184422 (2013)]. We show that in general case the boundary conditions lead to the magnetization profile corresponding to the Néel, Bloch, or intermediate twist. We explore how such twists can be utilized for creation of skyrmions and antiskyrmions, e.g., in a ...


Application Of Bradford’S Law Of Scattering On Research Publication In Astronomy & Astrophysics Of India, Satish Kumar, Senthilkumar R. Dec 2018

Application Of Bradford’S Law Of Scattering On Research Publication In Astronomy & Astrophysics Of India, Satish Kumar, Senthilkumar R.

Library Philosophy and Practice (e-journal)

The present study is focused on examining the application of Bradford’s law of scattering on research articles published in the field of Astronomy & Astrophysics by Indian scientist during 1988-2017. The bibliographic data was retrieved from Web of Science (WoS) bibliographic data base for different period of time. Total 18,877 journal’s article have been published by Indian scientist in the field of Astronomy & Astrophysics during 1988-2017 which was further retrieved and analyzed separately for different blocks of 10 years as well as for 30 years consolidated too. The core journal of the field was identified. The Bradford law ...


Dynamical Electron Vortices In Attosecond Double Photoionization Of H2, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, L. B. Madsen, S. X. Hu, Anthony F. Starace Dec 2018

Dynamical Electron Vortices In Attosecond Double Photoionization Of H2, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, L. B. Madsen, S. X. Hu, Anthony F. Starace

Anthony F. Starace Publications

We study electron momentum vortices in single-photon double ionization of H2 by time-delayed, counterrotating, elliptically polarized attosecond pulses propagating along either parallel or perpendicular to the molecular axis R. For kˆ | R, kinematical vortices occur similar to those found for He. For R, we find dynamical vortex structures originating from an ellipticity-dependent interplay of 1+u and 1+u continuum amplitudes. We propose a complete experiment to determine the magnitudes and relative phase of these amplitudes by varying pulse ellipticities and time delays.


Perturbative Representation Of Ultrashort Nonparaxial Elegant Laguerre-Gaussian Fields, Andrew Vikartofsky, Anthony F. Starace, Liang-Wen Pi Oct 2018

Perturbative Representation Of Ultrashort Nonparaxial Elegant Laguerre-Gaussian Fields, Andrew Vikartofsky, Anthony F. Starace, Liang-Wen Pi

Anthony F. Starace Publications

An analytical method for calculating the electromagnetic fields of a nonparaxial elegant Laguerre-Gaussian (LG) vortex beam is presented for arbitrary pulse duration, spot size, and LG mode. This perturbative approach provides a numerically tractable model for the calculation of arbitrarily high radial and azimuthal LG modes in the nonparaxial regime, without requiring integral representations of the fields. A key feature of this perturbative model is its use of a Poisson-like frequency spectrum, which allows for the proper description of pulses of arbitrarily short duration. This model is thus appropriate for simulating laser-matter interactions, including those involving short laser pulses.


Tunable Two-Dimensional Dirac Nodal Nets, Ding-Fu Shao, Shu-Hui Zhang, Xiaoqian Dang, Evgeny Y. Tsymbal Oct 2018

Tunable Two-Dimensional Dirac Nodal Nets, Ding-Fu Shao, Shu-Hui Zhang, Xiaoqian Dang, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Nodal-line semimetals are characterized by symmetry-protected band crossing lines and are expected to exhibit nontrivial electronic properties. Connections of the multiple nodal lines, resulting in nodal nets, chains, or links, are envisioned to produce even more exotic quantum states. In this work, we propose a feasible approach to realize tunable nodal-line connections in real materials. We show that certain space group symmetries support the coexistence of the planar symmetry-enforced and accidental nodal lines, which are robust to spin-orbit coupling and can be tailored into intricate patterns by chemical substitution, pressure, or strain. Based on first-principles calculations, we identify nonsymmorphic centrosymmetric ...


Magnetoelectric Memory Cells With Domain-Wall-Mediated Switching, Kirill Belashchenko, Oleg Tchernyshyov, Alexey Kovalev, Dmitri Nikonov Oct 2018

Magnetoelectric Memory Cells With Domain-Wall-Mediated Switching, Kirill Belashchenko, Oleg Tchernyshyov, Alexey Kovalev, Dmitri Nikonov

Kirill Belashchenko Publications

A magnetoelectric memory cell with domain - wall - mediated switching is implemented using a split gate architecture . The split gate architecture allows a domain wall to be trapped within a magnetoelectric antiferromagnetic ( MEAF ) active layer . An extension of this architecture applies to multiple gate linear arrays that can offer advantages in memory density , programmability , and logic functionality . Applying a small anisotropic in - plane shear strain to the MEAF can block domain wall precession to improve reliability and speed of switching


Makerspace Club, Carolyn Brady Oct 2018

Makerspace Club, Carolyn Brady

Honors Expanded Learning Clubs

This is a unique club that allows children to explore the world around them and make projects using materials provided by educators, and to get children thinking about how things work in the world, and how they do. They gain knowledge about success and failure of these things by recreating them.