Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

27,390 Full-Text Articles 39,172 Authors 4,619,833 Downloads 234 Institutions

All Articles in Physics

Faceted Search

27,390 full-text articles. Page 1 of 694.

A Demonstration Of The Infrared Activity Of Carbon Dioxide, Philip Sieg, William Berner, Peter Harnish, Philip C. Nelson 2019 University of Pennsylvania

A Demonstration Of The Infrared Activity Of Carbon Dioxide, Philip Sieg, William Berner, Peter Harnish, Philip C. Nelson

Department of Physics Papers

Before they can talk meaningfully about anthropogenic climate change, students need to grasp basic principles of natural planetary climates, for example, the key role of trace atmospheric gases in setting surface temperature. We describe a dramatic demonstration that scales well for large audiences and that requires as little as ten classroom minutes to show the crucial difference between room air and carbon dioxide gas. Beyond its significance for public policy, the demonstration can serve as a springboard to motivate discussion of important physics concepts such as rotation and vibration spectra.


Author Correction: Femtosecond Laser Mass Spectrometry And High Harmonic Spectroscopy Of Xylene Isomers (Scientific Reports (2018) Doi: 10.1038/S41598-018-22055-9), Abdullah Alharbi, Andrewy E. Boguslavskiy, Dane Austin, Nicolas Thire, D. Wood, P. Hawkins, Felicity McGrath, A. S. Johnson, I. Lopez-Quintas, Bruno Schmidt, Francois Legare, J. P. Marangos, Anh-Thu Le, Ravi Bhardwaj 2018 Missouri University of Science and Technology

Author Correction: Femtosecond Laser Mass Spectrometry And High Harmonic Spectroscopy Of Xylene Isomers (Scientific Reports (2018) Doi: 10.1038/S41598-018-22055-9), Abdullah Alharbi, Andrewy E. Boguslavskiy, Dane Austin, Nicolas Thire, D. Wood, P. Hawkins, Felicity Mcgrath, A. S. Johnson, I. Lopez-Quintas, Bruno Schmidt, Francois Legare, J. P. Marangos, Anh-Thu Le, Ravi Bhardwaj

Physics Faculty Research & Creative Works

The original version of this Article contained a typographical error in the spelling of the author Nicolas Thiré, which was incorrectly given as Nicholas Thiré. Nicolas Thiré was also incorrectly affiliated with 'Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006, Madrid, Spain'. The correct affiliation is listed below.

INRS-EMT, Advanced Laser Light Source, 1650 Lionel-Boulet Bvd, Varennes, J3X1S2, Canada.

This has now been corrected in the PDF and HTML versions of the Article and in the accompanying Supplementary Information file.


High-Performance Self-Powered Uv Detector Based On Sno2-Tio2 Nanomace Arrays, Duo Chen, Lin Wei, Lingpan Meng, Yanxue Chen, Yufeng Tian, Shishen Yan, Liangmo Mei, Jun Jiao 2018 School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

High-Performance Self-Powered Uv Detector Based On Sno2-Tio2 Nanomace Arrays, Duo Chen, Lin Wei, Lingpan Meng, Yanxue Chen, Yufeng Tian, Shishen Yan, Liangmo Mei, Jun Jiao

Physics Faculty Publications and Presentations

Photoelectrochemical cell-typed self-powered UV detectors have attracted intensive research interest due to their low cost, simple fabrication process, and fast response. In this paper, SnO2-TiO2 nanomace arrays composed of SnO2 nanotube trunk and TiO2 nanobranches were prepared using soft chemical methods, and an environment-friendly self-powered UV photodetector using this nanostructure as the photoanode was assembled. Due to the synergistic effect of greatly accelerated electron-hole separation, enhanced surface area, and reduced charge recombination provided by SnO2-TiO2 nanomace array, the nanostructured detector displays an excellent performance over that based on bare SnO2 arrays. The impact of the growing time of TiO2 branches ...


Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, Thomas J. Carroll, C. I. Sukenik 2018 Old Dominion University

Catalysis Of Stark-Tuned Interactions Between Ultracold Rydberg Atoms, A. L. Win, W. D. Williams, Thomas J. Carroll, C. I. Sukenik

Physics and Astronomy Faculty Publications

We have experimentally investigated a catalysis effect in the resonant energy transfer between ultracold 85Rb Rydberg atoms. We studied the time dependence of the process, 34p + 34p → 34s + 35s, and observed an enhancement of 34s state population when 34d state atoms are added.We have also performed numerical model simulations, which are in qualitative agreement with experiment and indicate that the enhancement arises from a redistribution of p-state atoms due to the presence of the d-state atoms.


Disorder-Driven Transition From S(+/-) To S(+ +) Superconducting Order Parameter In Proton Irradiated Ba(Fe1-Xrhx)(2)As-2 Single Crystals, G. Ghigo, D. Torsello, G. A. Ummarino, L. Gozzelino, Makariy A. Tanatar, Ruslan Prozorov, Paul C. Canfield 2018 Politecnico di Torino

Disorder-Driven Transition From S(+/-) To S(+ +) Superconducting Order Parameter In Proton Irradiated Ba(Fe1-Xrhx)(2)As-2 Single Crystals, G. Ghigo, D. Torsello, G. A. Ummarino, L. Gozzelino, Makariy A. Tanatar, Ruslan Prozorov, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

Microwave measurements of the London penetration depth and critical temperature T c were used to show evidence of a disordered-driven transition from s ± to s + + order parameter symmetry in optimally doped Ba ( Fe 1 − x Rh x ) 2 As 2 single crystals, where disorder was induced by means of 3.5 MeV proton irradiation. Signatures of such a transition, as theoretically predicted [V. D. Efremov et al., Phys. Rev. B 84, 180512(R) (2011)], are found as a drop in the low-temperature values of the London penetration depth and a virtually disorder-independent superconducting T c . We show how these experimental ...


Measuring The Practical Particle-In-A-Box: Orthorhombic Perovskite Nanocrystals, Brandon Mitchell, Eric Herrmann, Junhao Lin, Leyre Gomez, Chris de Weerd, Yasufumi Fujiwara, Kazutomo Suenaga, Tom Gregorkiewicz 2018 West Chester University of Pennsylvania

Measuring The Practical Particle-In-A-Box: Orthorhombic Perovskite Nanocrystals, Brandon Mitchell, Eric Herrmann, Junhao Lin, Leyre Gomez, Chris De Weerd, Yasufumi Fujiwara, Kazutomo Suenaga, Tom Gregorkiewicz

Physics

A connection between condensed matter physics and basic quantum mechanics is demonstrated as we use the fundamental 3D particle-in-a-box model to explain the optical properties of semiconductor nanocrystals, which are substantially modified due to quantum confinement. We also discuss recent advances in the imaging and measurement capabilities of transmission electron microscopy, which have made it possible to directly image single nanocrystals while simultaneously measuring their characteristic absorption energies. We introduce the basic theory of nanocrystals and derive a simplified expression to approximate the optical bandgap energy of an orthorhombic nanocrystal. CsPbBr3 perovskite nanocrystals are used to demonstrate this model due ...


Reaction Forces On A Fixed Ladder In Static Equilibrium: Analysis And Definitive Experimental Test Of The Ladder Problem, Mark P. Silverman 2018 Trinity College

Reaction Forces On A Fixed Ladder In Static Equilibrium: Analysis And Definitive Experimental Test Of The Ladder Problem, Mark P. Silverman

Faculty Scholarship

The development of a theoretical model to predict the four equilibrium forces of reaction on a simple ladder of non-adjustable length leaning against a wall has long remained an unresolved matter. The difficulty is that the problem is statically indeterminate and therefore requires complementary information to obtain a unique solution. This paper reports 1) a comprehensive theoretical analysis of the three fundamental models based on treating the ladder as a single Euler-Bernoulli beam, and 2) a detailed experimental investigation of the forces of reaction as a function of applied load and location of load. In contrast to previous untested proposals ...


Data Supporting The Paper "Dispersion Aerosol Indirect Effect In Turbulent Clouds: Laboratory Measurements Of Effective Radius", K. K. Chandrakar, Will Cantrell, A. Kostinski, R. A. Shaw 2018 Michigan Technological University

Data Supporting The Paper "Dispersion Aerosol Indirect Effect In Turbulent Clouds: Laboratory Measurements Of Effective Radius", K. K. Chandrakar, Will Cantrell, A. Kostinski, R. A. Shaw

Department of Physics Publications

No abstract provided.


Ingredients For The Electronic Nematic Phase In Fese Revealed By Its Anisotropic Optical Response, M. Chinotti, A. Pal, L. Degiorgi, A. E. Böhmer, Paul C. Canfield 2018 Swiss Federal Institute of Technology, Zurich

Ingredients For The Electronic Nematic Phase In Fese Revealed By Its Anisotropic Optical Response, M. Chinotti, A. Pal, L. Degiorgi, A. E. Böhmer, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

The origin of the anisotropy in physical quantities related to a symmetry-broken (nematic) electronic state is still very much debated in high-temperature superconductors. FeSe at ambient pressure undergoes a structural, tetragonal-to-orthorhombic phase transition at Ts≃90 K without any magnetic ordering on further cooling, which leads to an ideal electronic nematicity. Our unprecedented optical results provide evidence that the low-energy excitation spectrum in the nematic phase is shaped by an important interplay of the anisotropic Drude weight and scattering rate. In the zero-frequency limit though, the temperature dependence of the anisotropic scattering rate plays the dominant role and, combined with ...


Linear Least Squares Curve Fitting, R. Steven Turley 2018 Brigham Young University

Linear Least Squares Curve Fitting, R. Steven Turley

All Faculty Publications

This article is a review of the theory and practice behind linear least squares curve fitting. It outlines how to find the optimal parameters to match experimental data with theory and how to estimate the uncertainty in those parameters. The article demonstrates and validates these calculations in Excel, MATLAB, Mathematica, Python, and Julia.


Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter 2018 The Graduate Center, City University of New York

Quantum And Classical Transport Of 2d Electrons In The Presence Of Long And Short Range Disorder, Jesse Kanter

All Dissertations, Theses, and Capstone Projects

This work focuses on the study of electron transport of 2-D electron gas systems in relation to both fundamental properties of the systems such as disorder and scattering mechanisms, as well as unique magnetoresistance (MR) effects. A large portion of the discussion is built around the use of an in plane magnetic field to vary the ratio between the Zeeman energy between electrons of different spins and the Landau level spacing, creating a tool to control the quantization of the density of states (DOS).

This tool is first used to isolate Quantum Positive Magnetoresistance (QPMR), which grants insight to the ...


Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz 2018 The Graduate Center, City University of New York

Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz

All Dissertations, Theses, and Capstone Projects

Enormous strides have been made in next-generation power sources to build a more sustainable society. Energy storage has become a limiting factor in our progress, and there are huge environmental and financial incentives to find the next step forward in battery technology. This work discusses NMR methods for characterizing materials for use in battery application, with a special focus on relaxometry and diffusometry. Examples are provided of various recent investigations involving novel candidate electrolyte materials with different collaborators. Works discussed in this thesis include: the characterization of a new disruptive solid polymer electrolyte technology, investigations of the dynamics of super ...


Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw 2018 The Graduate Center, City University of New York

Charge State Dynamics And Quantum Sensing With Defects In Diamond, Jacob D. Henshaw

All Dissertations, Theses, and Capstone Projects

In recent years, defect centers in wide band gap semiconductors such as diamond, have received significant attention. Defects offer great utility as single photon emitters, nanoscale sensors, and quantum memories and registers for quantum computation. Critical to the utility of these defects, is their charge state.

In this dissertation, experiments surrounding the charge state dynamics and the carrier dynamics are performed and analyzed. Extensive studies of the ionization and recombination processes of defects in diamond, specifically, the Nitrogen Vacancy (NV) center, have been performed. Diffusion of ionized charge carriers has been imaged indirectly through the recapture of said carriers by ...


A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser 2018 The Graduate Center, City University of New York

A Network Theoretical Approach To Real-World Problems: Application Of The K-Core Algorithm To Various Systems, Kate Burleson-Lesser

All Dissertations, Theses, and Capstone Projects

The study of complex networks is, at its core, an exploration of the mechanisms that control the world in which we live at every scale, from particles no bigger than a grain of sand and amino acids that comprise proteins, to social networks, ecosystems, and even countries. Indeed, we find that, regardless of the physical size of the network's components, we may apply principles of complex network theory, thermodynamics, and statistical mechanics to not only better understand these specific networks, but to formulate theories which may be applied to problems on a more general level. This thesis explores several ...


Simulation Data Supporting The Paper "Optical Properties And Radiative Forcing Of Fractal-Like Tar Ball Aggregates From Biomass Burning", Janjaran Bhandari, Swarup China, Giulia Girotto, Barbara Scarnato, Kyle Gorkowski, Allison Aiken, Manvendra Dubey, C. Mazzoleni 2018 Michigan Technological University

Simulation Data Supporting The Paper "Optical Properties And Radiative Forcing Of Fractal-Like Tar Ball Aggregates From Biomass Burning", Janjaran Bhandari, Swarup China, Giulia Girotto, Barbara Scarnato, Kyle Gorkowski, Allison Aiken, Manvendra Dubey, C. Mazzoleni

Department of Physics Publications

Simulations data supporting the paper "Optical properties and radiative forcing of fractal-like tar ball aggregates from biomass burning," to be submitted to the Journal of Quantitative Spectroscopy and Radiative Transfer.


Using Strong Laser Fields To Produce Antihydrogen Ions, Christopher M. Keating 2018 Portland State University

Using Strong Laser Fields To Produce Antihydrogen Ions, Christopher M. Keating

Dissertations and Theses

We provide estimates of both cross section and rate for the stimulated attachment of a second positron into the (1s2 1Se) state of the H+ ion using Ohmura and Ohmura's (1960 Phys. Rev. 118 154) effective range theory, Reiss's strong field approximation (1980 Phys. Rev. A 22, 1786), and the principle of detailed balancing. Our motivation for producing H+ ion include its potential to be used as an intermediate state in bringing antihydrogen to ultra-cold (sub-mK) temperatures required for a variety of studies, which include both spectroscopy and the probing of the gravitational interaction of ...


From Photon To Neuron Chapter 16: Tunneling Of Photons And Electrons, Philip C. Nelson 2018 University of Pennsylvania

From Photon To Neuron Chapter 16: Tunneling Of Photons And Electrons, Philip C. Nelson

Department of Physics Papers

This chapter extends Part III of the book From Photon to Neuron (Princeton Univ Press 2017). This preliminary version is made freely available as-is in the hope that it will be useful.


Performance Impact Of Different Lower-Limb Setup Positions In The Backstroke Swimming Start, Gordon E. Barkwell 2018 The University of Western Ontario

Performance Impact Of Different Lower-Limb Setup Positions In The Backstroke Swimming Start, Gordon E. Barkwell

Electronic Thesis and Dissertation Repository

The performance impact of different knee extension angles in the setup position for a backstroke start was evaluated using an instrumented starting surface. Ten backstroke swimmers completed maximum-effort starts in each of two setup positions: one with the knees flexed, and one with the knees extended. The start handles and touchpad were instrumented with tri-axial force plates. Activity of major hip and knee extensors was measured using surface electromyography. Body position was recorded throughout the start using two high-speed cameras. There was no difference in time to 10 m between the two conditions, indicating there is likely no advantage in ...


Cubic Interpolation With Irregularly-Spaced Points In Julia 1.0, R. Steven Turley 2018 Brigham Young University

Cubic Interpolation With Irregularly-Spaced Points In Julia 1.0, R. Steven Turley

All Faculty Publications

This article shows how to interpolate between regularly- or irregularly-spaced points in Julia 1.0. It has derivations of the theory behind cubic splines, and piece-wise cubic hermite polynomial interpolation. The spline interpolants are continuous and have continuous first and second derivatives. The hermite polynomial interpolants are continuous and have continuous first derivatives. Three techniques are implemented to determine the slope at the data points for the interpolation (knots). One uses the average slope of the neighboring segments. Another use the quadratic polynomial passing through the point and its two neighbors. The third, PCHIP, is similar to the first method ...


The Geometry Of N = 3 Ads4 In Massive Iia, G. Bruno De Luca, Gabriele Lo Monaco, Niall T. Macpherson, Alessandro Tomasiello, Oscar Varela 2018 Universita di Milano - Bicocca

The Geometry Of N = 3 Ads4 In Massive Iia, G. Bruno De Luca, Gabriele Lo Monaco, Niall T. Macpherson, Alessandro Tomasiello, Oscar Varela

All Physics Faculty Publications

The geometry of the N=3" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">=3N=3, SO(4)-invariant, AdS4 solution of massive type IIA supergravity that uplifts from the N=3" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">=3N=3 ...


Digital Commons powered by bepress