Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

32,895 Full-Text Articles 51,609 Authors 9,792,643 Downloads 276 Institutions

All Articles in Physics

Faceted Search

32,895 full-text articles. Page 1 of 955.

Graviweak Theory In Bicomformal Space, Mubarak Ukashat 2022 Utah State University

Graviweak Theory In Bicomformal Space, Mubarak Ukashat

All Graduate Theses and Dissertations

There are four basic forces in nature: the electromagnetic force, which accounts for interactions of particles with charges; the weak force, which is responsible for radioactive decay; the strong force, which holds the particles inside a nucleus tightly bound together; and the gravitational force, which is responsible for keeping us on our beautiful planet, Earth and holding together our entire solar system. Physicists have been on the hunt for a theory that can single-handedly explain all these forces under the same underlying mathematical formulation. So far, physicists have suceeded in unifying the electromagnetic and weak forces in what is called ...


Bifurcations And Hysteresis In The Dynamics Of Small Populations Of Spherical Magnets, Peter T. Haugen 2022 Utah State University

Bifurcations And Hysteresis In The Dynamics Of Small Populations Of Spherical Magnets, Peter T. Haugen

All Graduate Theses and Dissertations

If you heat up some kinds of metals and then cool them down next to a magnet, they will be a magnet when they cool, but if they cool down away from a magnet, they will just be a lump of metal. This is an example of hysteresis and it’s very important for lots of technology. Another example of hysteresis might be a water tower pump that turns on when the tower is nearly empty and keeps going until the tower is nearly full. Whether or not the pump is on when the tower is half full depends on ...


Temperature Dependent Density Of States Models And Compiled Data For Radiation Induced Conductivity, Jodie Gillespie 2022 Utah State University

Temperature Dependent Density Of States Models And Compiled Data For Radiation Induced Conductivity, Jodie Gillespie

All Graduate Theses and Dissertations

Radiation Induced Conductivity (RIC) is the change in conductivity of a material due to bombardment from incident high energy radiation. RIC has consistently been found to follow a standard power law relation, 𝜎𝑅𝐼𝐶(𝑇)=𝑘𝑅𝐼𝐶(𝑇)𝐷∆(𝑇), between conductivity, 𝜎𝑅𝐼𝐶 and adsorbed dose rate, 𝐷. 𝑘𝑅𝐼𝐶(𝑇) and ∆(𝑇) are material dependent parameters. Previous RIC models were developed in the 𝑇→0 limit. Now expanded models are developed in the low temperature limit (within a few 𝑘𝐵𝑇 of the effective Fermi level) by approximating the Fermi-Dirac equation within a few 𝑘𝐵𝑇 of the effective Fermi level. Derivations are based ...


Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia 2022 Southern Methodist University

Classification Of Pixel Tracks To Improve Track Reconstruction From Proton-Proton Collisions, Kebur Fantahun, Jobin Joseph, Halle Purdom, Nibhrat Lohia

SMU Data Science Review

In this paper, machine learning techniques are used to reconstruct particle collision pathways. CERN (Conseil européen pour la recherche nucléaire) uses a massive underground particle collider, called the Large Hadron Collider or LHC, to produce particle collisions at extremely high speeds. There are several layers of detectors in the collider that track the pathways of particles as they collide. The data produced from collisions contains an extraneous amount of background noise, i.e., decays from known particle collisions produce fake signal. Particularly, in the first layer of the detector, the pixel tracker, there is an overwhelming amount of background noise ...


Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran II 2022 Embry-Riddle Aeronautical University

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii

Doctoral Dissertations and Master's Theses

Plasma escape from the high-latitude ionosphere (ion outflow) serves as a significant source of heavy plasma to magnetospheric plasma sheet and ring current regions. Outflows alter mass density and reconnection rates, hence global responses of the magnetosphere. The VISIONS-1 (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of nightside ion outflow at altitudes where it is initiated, below 1000 km. Energetic ion data from the VISIONS-1 polar cap boundary ...


A Review On Natural Gamma Radiation Dose Levels And Its Health Effects, Shankramma K, Kamsali Nagaraja, Sathish L A, Charan Kumar K 2022 Division of Nanoscience and Technology, Department of Water and Health, JSS Academy of Higher Education and Research, Mysuru - 570015, India

A Review On Natural Gamma Radiation Dose Levels And Its Health Effects, Shankramma K, Kamsali Nagaraja, Sathish L A, Charan Kumar K

International Journal of Health and Allied Sciences

Exposure to the natural background gamma radiations in both indoor and outdoor environments is inevitable. The long-term exposure to such radiations could result in lung cancer (sometimes leukaemia, CNS tumours); and hence it must be constantly monitored. In this paper, an attempt is made to review the background natural gamma radiation doses reported at various locations for the south Indian environment and it was found that the gamma levels in coastal regions were relatively higher than those in sub continental locations but in most of the locations the annual effective dose rate was within the permissible limits as per UNSCEAR


Coupled Surface Plasmon–Phonon Polariton Nanocavity Arrays For Enhanced Mid-Infrared Absorption, Satya R. Kachiraju, Ivan Nekrashevich, Imtiaz Ahmad, Hira Farooq, Long Chang, Sangsik Kim, Myoung-Hwan Kim 2022 The University of Texas Rio Grande Valley

Coupled Surface Plasmon–Phonon Polariton Nanocavity Arrays For Enhanced Mid-Infrared Absorption, Satya R. Kachiraju, Ivan Nekrashevich, Imtiaz Ahmad, Hira Farooq, Long Chang, Sangsik Kim, Myoung-Hwan Kim

Physics and Astronomy Faculty Publications and Presentations

Resonant optical cavities are essential components in mid-infrared applications. However, typical film-type cavities require multilayer stacks with a micronthick spacer due to mid-infrared wavelengths, and their performance is limited by narrow frequency tunability and angular sensitivity. We propose and experimentally demonstrate the subwavelength-scale (≈𝜆0/150) resonant nanocavity arrays that enhance the absorption spectrum of the device in the mid-infrared (10–12 microns) via excitation of coupled surface plasmon–phonon polaritons. The proposed metal–insulator–polar dielectric (gold–silicon–silicon carbide) structure supports a guided mode of the coupled surface polaritons in the lateral direction while vertically confining the mid-infrared wave


Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. McPeak 2022 Louisiana State University and Agricultural and Mechanical College

Resonant Plasmonic–Biomolecular Chiral Interactions In The Far-Ultraviolet: Enantiomeric Discrimination Of Sub-10 Nm Amino Acid Films, Tiago Ramos Leite, Lin Zschiedrich, Orhan Kizilkaya, Kevin M. Mcpeak

Faculty Publications

Resonant plasmonic–molecular chiral interactions are a promising route to enhanced biosensing. However, biomolecular optical activity primarily exists in the far-ultraviolet regime, posing significant challenges for spectral overlap with current nano-optical platforms. We demonstrate experimentally and computationally the enhanced chiral sensing of a resonant plasmonic–biomolecular system operating in the far-UV. We develop a full-wave model of biomolecular films on Al gammadion arrays using experimentally derived chirality parameters. Our calculations show that detectable enhancements in the chiroptical signals from small amounts of biomolecules are possible only when tight spectral overlap exists between the plasmonic and biomolecular chiral responses. We support ...


Magnetoquantum Oscillations In The Specific Heat Of A Topological Kondo Insulator, Patrick G. LaBarre, Andreas Rydh, J. Palmer-Fortune, J. A. Frothingham, S. T. Hannahs, Arthur P. Ramirez, Nathanael Alexander Fortune 2022 University of California, Santa Cruz

Magnetoquantum Oscillations In The Specific Heat Of A Topological Kondo Insulator, Patrick G. Labarre, Andreas Rydh, J. Palmer-Fortune, J. A. Frothingham, S. T. Hannahs, Arthur P. Ramirez, Nathanael Alexander Fortune

Physics: Faculty Publications

Surprisingly, magnetoquantum oscillations (MQO) characteristic of a metal with a Fermi surface have been observed in measurements of the topological Kondo insulator SmB6. As these MQO have only been observed in measurements of magnetic torque (dHvA) and not in measurements of magnetoresistance (SdH), a debate has arisen as to whether the MQO are an extrinsic effect arising from rareearth impurities, defects, and/or aluminum inclusions or an intrinsic effect revealing the existence of charge-neutral excitations. We report here the first observation of magnetoquantum oscillations in the low-temperature specific heat of SmB6. The observed frequencies and their angular dependence for these ...


Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam 2022 The British University in Egypt

Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam

Basic Science Engineering

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This exhibition produces electromagnetic hydrodynamic phenomena over a fluid flow. A new study model is formed with the Sutterby nanofluid flow through the Riga plate, which is crucial to the structure of several industrial and entering advancements, including thermal nuclear reactors, flow metres and nuclear reactor design. This article addresses the entropy analysis of Sutterby nanofluid flow over the Riga plate. The Cattaneo–Christov heat and mass flux were used to examine the behaviour of heat and mass relaxation ...


An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez 2022 California Polytechnic State University, San Luis Obispo

An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez

Physics

A specialized control circuit using an off-the-shelf buck converter is built for an Insulated Solar Electric Cooker (ISEC). Cost and efficient power delivery are the focus. An ISEC is synonymous to a direct load heat resistor, allowing a specific maximum power point tracking (MPPT) algorithm and fewer components. Only a microcontroller, voltage sensor, and digital-to-analog converter are used with the buck converter to maximize the power delivered by a 100W solar panel for the 3.3Ω load.


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati 2022 The Graduate Center, City University of New York

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In ...


Using Protonation Microstates And Hydrogen Bond Networks To Track Proton Transfer Pathways In Complex I, Umesh Khaniya 2022 The Graduate Center, City University of New York

Using Protonation Microstates And Hydrogen Bond Networks To Track Proton Transfer Pathways In Complex I, Umesh Khaniya

Dissertations, Theses, and Capstone Projects

Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N- side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from Mrp antiporters, while the fourth, E-channel is unique. Because of the complex possible paths thorough the many buried polar residues and lack of high-resolution crystal structure, the path for protons through the E-channel is elusive.

In this dissertation, the E-channel proton pumping ...


The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang 2022 The Graduate Center, City University of New York

The Separation Of Charm And Bottom Decays Measured In P+Au Collisions At 200 Gev, Zhiyan Wang

Dissertations, Theses, and Capstone Projects

It has long been observed experimentally, from previous heavy-flavor electron measurements, that heavy quarks are subject to substantial modifications of their momentum spectrum. Using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC), measurements of the production of open heavy flavor hadrons with charm and bottom quarks in p+Au collisions at 200 GeV are studied and presented in this thesis. Distance of closest approach analysis of electron tracks is used to study the semileptonic decay electrons from charm and bottom hadrons. The results include invariant yield and fraction of bottom electrons. In addition to the p+p and ...


Driven Dipolaritons In Van Der Waals Transition Metal Dichalcogenide Heterostructures: Properties And Applications, Patrick Serafin 2022 The Graduate Center, City University of New York

Driven Dipolaritons In Van Der Waals Transition Metal Dichalcogenide Heterostructures: Properties And Applications, Patrick Serafin

Dissertations, Theses, and Capstone Projects

The need for advances in optical computation leads us toward the investigation of novel methods of re-routing light in optical circuits. The behavior and properties of electrically driven exciton-dipolaritons in van der Waals transition metal dichalcogenides are investigated as a platform for realizing working elements of a polaritronic transistor. In this work, we consider exciton-dipolaritons, which are three-way superposition of cavity photons, direct excitons, and indirect excitons in a bilayer semiconducting system embedded in an optical microcavity. We start by providing motivation for our study of polaritons and then survey the fundamental properties of exciton-dipolaritons. We also survey the basic ...


Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano 2022 The Graduate Center, City University of New York

Astrophysics, Cosmology And Particle Phenomenology At The Energy Frontier, Jorge Fernandez Soriano

Dissertations, Theses, and Capstone Projects

This dissertation consists of two parts, treating significantly separated fields. Each part consists on several chapters, each treating a somewhat isolated topic from the rest. In each chapter, I present some of the work developed during my passage through the graduate program, which has mostly been published elsewhere.

Part I – Cosmic Rays and Particle Physics

  • Chapter 1: In this chapter we present an introduction to the topic of cosmic ray physics, with an special focus on the so-called ultra high energy cosmic rays: their potential origins, effects during their propagation between their sources and Earth, the different techniques used for ...


Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill 2022 The Graduate Center, City University of New York

Magnetic Field Effects On The Physics Of Neutron Stars, Aric A. Hackebill

Dissertations, Theses, and Capstone Projects

In the context of neutron stars (NS), dense-magnetized quark and hadron models have been well studied under the assumption that the system's pressures are isotropic. However, the pressures determined from semi-classical statistical averaging of the energy momentum tensor in the presence of a uniform background magnetic field are anisotropic with different pressures arising along and perpendicular to the magnetic field direction. Since large magnetic fields are expected to be present in the interior of NS, it is important to understand the roll the pressure anisotropy plays. While considering the pressure anisotropy, we revisit some important calculations in NS physics ...


Electron Transport In Quantum Systems With Interaction, Sara Abedi 2022 The Graduate Center, City University of New York

Electron Transport In Quantum Systems With Interaction, Sara Abedi

Dissertations, Theses, and Capstone Projects

No abstract provided.


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales 2022 The Graduate Center, City University of New York

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve ...


Removal Of Anisotropic Background From Neutral Pion And Tagged Direct Photon–Hadron Correlations Of Au+Au 200 Gev Collisions, Zachary Rowan 2022 The Graduate Center, City University of New York

Removal Of Anisotropic Background From Neutral Pion And Tagged Direct Photon–Hadron Correlations Of Au+Au 200 Gev Collisions, Zachary Rowan

Dissertations, Theses, and Capstone Projects

A reaction plane dependent event mixing technique is developed to remove the collective background from two particle correlation measurements in heavy ion collisions. The method eliminates the need for any external flow measurements and is well suited for studying the path length dependence of particle production in quark-gluon plasma. Central to mid-central, as well as in vs out-of-plane, per neutral pion trigger integrated away-side hadron yield comparisons are made. Results suggest a significant path length dependent partonic energy loss in the medium. A tagging method is also introduced to measure the direct photon yield for various collision criteria. Direct photon ...


Digital Commons powered by bepress