Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 468

Full-Text Articles in Physics

Non-Adiabatic Quantum Dynamics Of The Ultracold Li+Lina→ Li2+Na Chemical Reaction, B. K. Kendrick, M. Li, H. Li, S. Kotochigova, J. F.E. Croft, Balakrishnan Naduvalath Jun 2020

Non-Adiabatic Quantum Dynamics Of The Ultracold Li+Lina→ Li2+Na Chemical Reaction, B. K. Kendrick, M. Li, H. Li, S. Kotochigova, J. F.E. Croft, Balakrishnan Naduvalath

Chemistry and Biochemistry Faculty Publications

We report non-adiabatic dynamics of the Li+LiNa→Li2+Na chemical reaction at cold and ultracold temperatures employing accurate ab initio electronic potential energy surfaces in a quantum dynamics formulation employing a diabatic representation. Results are compared against those from a single adiabatic ground state potential energy surface and a universal model based on the long-range interaction potential. We discuss signatures of non-universal behavior in the total rate coefficients as well as strong non-adiabatic effects in the state-to-state rotationally resolved rate coefficients.


Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton Apr 2020

Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton

Physics & Astronomy Faculty Publications

The second hyperpolarizability (γ) of the H2 molecule was measured by gas-phase electric field induced second harmonic generation at the frequencies of the one-photon resonance for the 3–0 Q(J) overtone transitions (v, J = 0, J → 3, J for J = 0, 1, 2, and 3). The magnitude of the resonant contribution to γ was measured with 2% accuracy using the previously determined non-resonant γ for calibration. Pressure broadening and frequency shift for the transitions were also measured. A theoretical expression for the resonant vibrational γ contribution in terms of transition polarizabilities is compared to the observations. The measured γ ...


Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Apr 2020

Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Publications

Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto ...


The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang Apr 2020

The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang

Physics & Astronomy Faculty Publications

The breakup of a quantum liquid droplet is examined through a 4He cluster by removing the attractive tail in the interaction between some of the atoms in the system with the diffusion quantum Monte Carlo simulation. The ground-state energy, kinetic energy, cluster size, and density profile of the cluster are evaluated against the percentage of the atoms without the attractive tail. The condition for the cluster to lose its ability to form a quantum liquid droplet at zero temperature is found and analyzed. The cluster is no longer able to form a quantum liquid droplet when about two-thirds of pairs ...


High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu Mar 2020

High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu

Physics & Astronomy Faculty Publications

The development of new high dielectric materials is essential for advancement in modern electronics. Oxides are generally regarded as the most promising class of high dielectric materials for industrial applications as they possess both high dielectric constants and large band gaps. Most previous researches on high dielectrics were limited to already known materials. In this study, we conducted an extensive search for high dielectrics over a set of ternary oxides by combining crystal structure prediction and density functional perturbation theory calculations. From this search, we adopted multiple stage screening to identify 441 new low-energy high dielectric materials. Among these materials ...


Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott Iii, Donald R. Smith Jan 2020

Pair-A-Dice Lost: Experiments In Dice Control, Robert H. Scott Iii, Donald R. Smith

UNLV Gaming Research & Review Journal

This paper presents our findings from experiments designed to test whether we could use a custom-made dice throwing machine applying common dice control methods to produce dice rolls that differ from random. In earlier research we calculated the percentages of control a craps player needs to break even or beat the house (Smith and Scott, 2018). Using the most common practices of dice control in craps, we established how dice should be configured (i.e., set) and thrown to achieve certain outcomes such as not rolling a seven in the point cycle. We decided to run experiments to see if ...


Author Correction: Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabriel B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Jan 2020

Author Correction: Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabriel B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Publications

No abstract provided.


First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma Dec 2019

First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Publications

Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to ...


Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed Dec 2019

Pressure Driven Electronic Band Gap Engineering In Tin(Iv)-O,N Compounds, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

The intrinsic link between long-range order, coordination geometry, and the electronic properties of a system must be understood in order to tailor function-specific materials. Although material properties are typically tailored using chemical dopants, such methods can cause irreversible changes to the structure, limiting the range of functionality. The application of high pressure may provide an alternative “clean” method to tune the electronic properties of semiconducting materials by tailoring their defect density and structure.

We have explored a number of optoelectronic relevant materials with promising characteristics, specifically Sn-(O,N) compounds which have been predicted to undergo pressure-mediated opening of their ...


Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Nov 2019

Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Publications

Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound ...


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Publications

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and ...


Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta Sep 2019

Closing The Nuclear Fuel Cycle With A Simplified Minor Actinide Lanthanide Separation Process (Alsep) And Additive Manufacturing, Artem V. Gelis, Peter Kozak, Andrew T. Breshears, M. Alex Brown, Cari Launiere, Emily L. Campbell, Gabreil B. Hall, Tatiana G. Levitskaia, Vanessa E. Holfeltz, Gregg J. Lumetta

Chemistry and Biochemistry Faculty Publications

Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle ...


Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang Aug 2019

Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang

Physics & Astronomy Faculty Publications

The FeSe-based superconductors exhibit a wide range of critical temperature Tcunder a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman-scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals show an anomalous power-law temperature dependence of phonon linewidths, deviating from the standard anharmonic behavior. This intriguing phenomenon is attributed to electron-phonon coupling effects enhanced by electron correlation, as evidenced by the evolution of the A1g Raman mode. Meanwhile, an ...


Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks Aug 2019

Applied Symmetry For Crystal Structure Prediction, Scott William Fredericks

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis presents an original open-source Python package called PyXtal (pronounced "pi-crystal") that generates random symmetric crystal structures for use in crystal structure prediction (CSP). The primary advantage of PyXtal over existing structure generation tools is its unique symmetrization method. For molecular structures, PyXtal uses an original algorithm to determine the compatibility of molecular point group symmetry with Wyckoff site symmetry. This allows the molecules in generated structures to occupy special Wyckoff positions without breaking the structure's symmetry. This is a new feature which increases the space of search-able structures and in turn improves CSP performance.

It is shown ...


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Publications

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Publications

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium ...


A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle Jul 2019

A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle

Physics & Astronomy Faculty Publications

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T... (See full abstract in article).


Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen Jul 2019

Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen

Physics & Astronomy Faculty Publications

Topological semimetals are a fascinating class of quantum materials that possess extraordinary electronic and transport properties. These materials have attracted great interests in recent years for their fundamental significance and potential device applications. There have been intensive studies suggested that three-dimensional graphene networks support topological semimetals with two types of continuous nodal lines: one is to form closed nodal rings in Brillouin zone and the other ones traversing the whole Brillouin zone to be periodically connected. Carbon has negligible spin-orbit coupling, non-magnetism and great diversity of allotropes, which makes it very promising in realizing topological nodal line semimetals. Here we ...


Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil Jun 2019

Rotational Quenching Of Hd Induced By Collisions With H2 Molecules, Yier Wan, Nadulvalath Balakrishnan, B. H. Yang, R. C. Forrey, P. C. Stancil

Chemistry and Biochemistry Faculty Publications

Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.


How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei Jun 2019

How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei

Physics & Astronomy Faculty Publications

The origin of fast radio bursts (FRBs) is still unknown. Multiwavelength observations during or shortly after the FRB phase would be essential to identify the counterpart of an FRB and to constrain its progenitor and environment. In this work, we investigate the brightness of the “fast optical bursts” (FOBs) associated with FRBs and the prospects of detecting them. We investigate several inverse Compton (IC) scattering processes that might produce an FOB, including both the one-zone and two-zone models. We also investigate the extension of the same mechanism of FRB emission to the optical band. We find that a detectable FOB ...


The Purported Square Ice In Bilayer Graphene In A Nanoscale, Monolayer Object, Tod A. Pascal, Craig P. Schwartz, Keith V. Lawler, David Prendergast Jun 2019

The Purported Square Ice In Bilayer Graphene In A Nanoscale, Monolayer Object, Tod A. Pascal, Craig P. Schwartz, Keith V. Lawler, David Prendergast

Chemistry and Biochemistry Faculty Publications

The phase diagram of water is complex, and interfacial effects can stabilize unusual structures at the nanoscale. Here, we employ bond order accelerated molecular dynamics simulations to show that upon encapsulation within bilayer graphene, water can spontaneously adopt a two-dimensional (monomolecular) layer of “square ice” at ambient conditions, instead of an encapsulated water droplet. Free energy calculations show that this motif is thermodynamically stable up to diameters of approximately 15 nm due to enhanced hydrogen bonding and favorable binding to the graphene sheets. Entropic losses due to solidification and reduced graphene–graphene binding enthalpy are opposing thermodynamic forces that conspire ...


Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang Jun 2019

Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang

Physics & Astronomy Faculty Publications

van der Waals (vdW) layered compounds provided a fruitful research platform for the realization of superconductivity. However, a vdW layered superconductor with a high transition temperature (Tc) at ambient conditions is still rare. Here, using variable-composition evolutionary structure predictions, we systematically explored the stable compounds in the P-S system up to 20 GPa. Opposed to the complex stoichiometries at ambient conditions, only one compound, PS2, is predicted to be thermodynamically stable above 8 GPa. Strikingly, PS2 is a vdW layered material isostructural to 3R−MoS2 exhibiting a predicted Tc of around 11 K at ambient pressure, both in the bulk ...


Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang May 2019

Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang

Physics & Astronomy Faculty Publications

A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson's ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic ...


Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light May 2019

Specific Heat, Magnetic Susceptibility, And The Effect Of Pressure On Structural Properties And Valence Of Eumn2si2, Euco2si2, And Eu5in2sb6, Brian Edward Light

UNLV Theses, Dissertations, Professional Papers, and Capstones

Many intermetallic solids containing elements from the rare earth series show interesting and unusual behavior associated with 4f electrons. This behavior includes unusual magnetic order, strongly correlated electrons, intermediate valence, heavy fermions, the Kondo effect, superconductivity, and non-Fermi liquid (NFL) to name a few. When long range magnetic order is suppressed to T = 0 K by the application of an external tuning parameter such as pressure, magnetic field, or chemical doping, a quantum critical point (QCP) appears in which strong quantum fluctuations give rise to many of the mentioned unusual properties.

Most of the past studies on unusual 4f materials ...


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported ...


Super Rapid Crystal Growth And Quench Of Monoclinic Bi-Ii* During Dynamic Compression, Zachary Allen Fussell May 2019

Super Rapid Crystal Growth And Quench Of Monoclinic Bi-Ii* During Dynamic Compression, Zachary Allen Fussell

UNLV Theses, Dissertations, Professional Papers, and Capstones

We show that monoclinic Bi-II* forms during a dynamic compression regime with crystal growth rates from melt of ≈ 70 m/s. This extreme quench rate implies crystallization by non-diffusive processes and indicates that the liquid had a high degree of pre-ordering. Using ambient condition single crystal structure analysis we show for the first time that the monoclinic distorted phase of Bi (Bi-II) exists at ambient pressure, albeit bound to formation under dynamic compression. We review the pressure, temperature, and time conditions for formation and growth of this structure.


Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande May 2019

Equation Of State Of H2o Ice Using Melt-Recrystallization, Zachary Michael Grande

UNLV Theses, Dissertations, Professional Papers, and Capstones

The recent surge in exoplanet discoveries due to advancements in astrophysical technology and analysis has brought the reliability of early equation of state measurements into question as they are the limiting factor when modeling composition of these planets. H2O content is among the most important for the search of habitable planets as well as in understanding planetary dynamics and atmosphere formation. Over the last three decades the equation of state of H2O has been investigated with various techniques but, has suffered from anisotropic strain and poor powder statistics resulting in a large discrepancy in equation of state fits. At pressures ...


Acr Accreditation For Utah Valley Hospital’S Radiation Oncology Center, Remy Manigold May 2019

Acr Accreditation For Utah Valley Hospital’S Radiation Oncology Center, Remy Manigold

UNLV Theses, Dissertations, Professional Papers, and Capstones

Becoming an accredited clinic through the American College of Radiology (ACR) and their Radiation Oncology Practice Accreditation (ROPA) program will provide third-party evaluation of patient care to ensure the best treatment possible for patients.

Talk of getting ACR accreditation has occurred in the past for Utah Valley Hospital/American Fork Hospital, but at the time it was seen as something that did not provide sufficient value vs. the cost. The recent One Intermountain restructuring is intended to unify all of the Intermountain Healthcare radiation oncology centers in Utah so the Radiation Oncology Director has set the goal that all Intermountain ...


Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang Mar 2019

Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang

Physics & Astronomy Faculty Publications

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs ...


Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst Feb 2019

Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst

Physics & Astronomy Faculty Publications

By irradiating a pressurized mixture of a fluorine-bearing compound (XeF2XeF2) and HgF2HgF2 with synchrotron hard x-rays ... (See full text for complete abstract)