Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1452

Full-Text Articles in Physics

Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens Aug 2019

Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens

Journal of the South Carolina Academy of Science

Critical and supercritical fluids have a variety of applications, from use as machine lubricants in high pressure or high temperature environments to the manufacturing of materials such as aerogel. The optical properties of fluids undergo rapid changes near the critical point resulting in a rapid increase in turbidity known as critical opalescence. These optical changes can be used to probe the universality of critical behavior. As a fluid approaches the critical point, the compressibility rapidly increases. In a gravitational field, this increase in compressibility leads to near-critical fluids stratifying by phase and density, making it difficult to observe the optical ...


Table Of Contents Aug 2019

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni Aug 2019

Extensive Soot Compaction By Cloud Processing From Laboratory And Field Observations, Janarjan Bhandari, Swarup China, Kamal Kant Chandrakar, Greg Kinney, Will Cantrell, Raymond Shaw, Lynn Mazzoleni, Giulia Girotto, Noopur Sharma, Kyle Gorkowski, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, Nicola Zanca, Giulia Pavese, Francesco Esposito, Manvendra K Dubey, Allison C Aiken, Rajan K Chakrabarty, Hans Moosmüller, Timothy B Onasch, Rahul A Zaveri, Barbara V Scarnato, Paulo Fialho, Claudio Mazzoleni

Michigan Tech Publications

Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after ...


Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew Aug 2019

Erratum: "Imaging The Three‐Dimensional Orientation And Rotational Mobility Of Fluorescent Emitters Using The Tri‐Spot Point Spread Function", Oumeng Zhang, Jin Lu, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

In the original paper, a calibration error exists in the image-formation model used to analyze experimental images taken by our microscope, causing a bias in the orientation measurements in Figs. 2 and 3. The updated measurements are shown in Fig. E1. We have also updated the supplementary material for the original article to discuss the revised PSF model and estimation algorithms (supplementary material 2) and show the revised model and measurements (Figs. S1, S3, S7, S8, and S10–S13).


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument ...


Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz Jul 2019

Stereodynamical Control Of A Quantum Scattering Resonance In Cold Molecular Collisions, Pablo G. Jambrina, James F.E. Croft, Hua Guo, Mark Brouard, Balakrishnan Naduvalath, F. Javier Aoiz

Chemistry and Biochemistry Faculty Publications

Cold collisions of light molecules are often dominated by a single partial wave resonance. For the rotational quenching of HD (v=1, j=2) by collisions with ground state para-H2, the process is dominated by a single L=2 partial wave resonance centered around 0.1 K. Here, we show that this resonance can be switched on or off simply by appropriate alignment of the HD rotational angular momentum relative to the initial velocity vector, thereby enabling complete control of the collision outcome.


Structure, Stability And Vibrational Properties Of Cdse Wurtzite Molecules And Nanocrystals: A Dft Study, Mudar A. Abdulsattar, Hayder M. Abduljalil, Hussein Hakim Abed Jul 2019

Structure, Stability And Vibrational Properties Of Cdse Wurtzite Molecules And Nanocrystals: A Dft Study, Mudar A. Abdulsattar, Hayder M. Abduljalil, Hussein Hakim Abed

Karbala International Journal of Modern Science

Bare and hydrogen passivated CdSe wurtzite molecules and nanostructures are investigated. The investigation is performed using wurtzoid structures that represent the wurtzite structure at the molecular and nanoscale region. The results show that the energy gap of bare and hydrogen passivated CdSe molecules is higher than and converges to the experimental bulk energy gap. Vibrational analysis of wurtzoid molecules shows that the experimental longitudinal optical mode is in between bare and hydrogen passivated CdSe molecules and very near to bare molecules. The stability of wurtzoid molecules against transition to CdSe diamondoids and cuboids that represent the molecular scale of diamond ...


A New Approach To The Potential Energy Of Solids, Radhika Chauhan, Sanjeev K. Verma, Anushri Gupta, Anita Kumari, B. D. Indu Jul 2019

A New Approach To The Potential Energy Of Solids, Radhika Chauhan, Sanjeev K. Verma, Anushri Gupta, Anita Kumari, B. D. Indu

Karbala International Journal of Modern Science

A general theory is developed to investigate the expression for potential energy without using (i) empirical results and (ii) process of parameterizing. The simple approach of thermodynamics is adopted to obtain the expressions for the interaction energy of solids in terms of interatomic separation and crystal volume. The new findings have been applied to obtain the expressions for bulk modulus and pressure. The variation of the potential energy function, which provides a means to understand the stability of a crystal has been found in excellent agreements to the earlier results. The use of obtained harmonic and anharmonic force constants may ...


Kinetic Study For The Effect Of New Inhibitors On The Activity Of Purified Gpt From Blood Of Cardiovascular Patients, Firas Maher Jul 2019

Kinetic Study For The Effect Of New Inhibitors On The Activity Of Purified Gpt From Blood Of Cardiovascular Patients, Firas Maher

Karbala International Journal of Modern Science

In this study several biochemical parameters for cardiovascular patients have been measured CK-MB ,LDH ,GPT and GOT in addition to lipid profile , MDA ,Vitamin C and Vitamin E . New derivatives of ascorbic acid have been synthesized and tested to inhibit the purified GPT from the blood of cardiovascular patients Glutamate pyruvate transaminase (GPT) was purified from cardiovascular patients using ammonium sulphate salt for precipitation then dialysed using 0.1 M Tris-HCL buffer pH7.8 , then filtrated by gel filtration chromatography using Sephadex G-100 , followed by electrophoresis using poly acrylamide – bis acrylamide and sodium dodecyl sulphate (SDS). Derivatives of 3-(acetyl ...


Neighborhoods And Partial Sums Of A New Class Of Meromorphic Multivalent Functions Defined By Fractional Calculus, Aqeel Ketab Al-Khafaji, Waggas Galib Atshan, Salwa Salman Abed Jul 2019

Neighborhoods And Partial Sums Of A New Class Of Meromorphic Multivalent Functions Defined By Fractional Calculus, Aqeel Ketab Al-Khafaji, Waggas Galib Atshan, Salwa Salman Abed

Karbala International Journal of Modern Science

In this paper, we introduce and study a new class A^* (λ,μ,ν,η,p,ζ,τ) of meromorphic multivalent functions defined by fractional calculus operator of the punctured unit disc U^*. On this class we obtain several results like, coefficient inequality, modified Hadamard product, (N,δ)- neighborhood, partial sums, convex linear combination and integral operator.


Biomedical Applications Of Chasmanthera Dependens Stem Extract Mediated Silver Nanoparticles As Antimicrobial, Antioxidant, Anticoagulant, Thrombolytic, And Larvicidal Agents, Daniel Ayandiran Aina, Oluwafayoke Owolo, Agbaje Lateef, Folasade O. Aina, Abbas Saeed Hakeem, Morenike Adeoye-Isijola, Victor Okon, Tesleem B. Asafa, Joseph Adetunji Elegbede, Olumide D. Olukanni, Isaac Adediji Jul 2019

Biomedical Applications Of Chasmanthera Dependens Stem Extract Mediated Silver Nanoparticles As Antimicrobial, Antioxidant, Anticoagulant, Thrombolytic, And Larvicidal Agents, Daniel Ayandiran Aina, Oluwafayoke Owolo, Agbaje Lateef, Folasade O. Aina, Abbas Saeed Hakeem, Morenike Adeoye-Isijola, Victor Okon, Tesleem B. Asafa, Joseph Adetunji Elegbede, Olumide D. Olukanni, Isaac Adediji

Karbala International Journal of Modern Science

The stem extract of Chasmanthera dependens was used in the biofabrication of silver nanoparticles (AgNPs) in this study. The AgNPs was characterised using UV-visible spectroscopy, Field Emission Scanning Electron Microscope (FESEM), EDX, and the Fourier Transform Infrared Spectroscopy (FTIR). Antibacterial, antioxidant, anticoagulant, thrombolytic and larvicidal activities of the biosynthesised nanoparticles were carried out. There was a peak at 418 nm with a strong silver peak observed around 2.7KeV when the EDX analysis was carried out. The FESEM showed a large number of cubically shaped nanoparticles with sizes ranging from 24.53 to 92.38 nm. CDE-AgNPs was effective against ...


Editorial Board Jul 2019

Editorial Board

Karbala International Journal of Modern Science

No abstract provided.


Using Forensics To Introduce Ir Spectroscopy & Molecular Modeling, Joe Golab Jul 2019

Using Forensics To Introduce Ir Spectroscopy & Molecular Modeling, Joe Golab

Faculty Publications & Research

A student activity is reported that analyzes “medical evidence” with experimental and computational methods. The lesson demonstrates benefits of solving practical problems with integrated tools.


60th Annual Rocky Mountain Conference On Magnetic Resonance Jul 2019

60th Annual Rocky Mountain Conference On Magnetic Resonance

Rocky Mountain Conference on Magnetic Resonance

Final program, abstracts, and information about the 60th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Denver, Colorado, July 21-25, 2019.


Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang Jun 2019

Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang

Physics & Astronomy Faculty Publications

van der Waals (vdW) layered compounds provided a fruitful research platform for the realization of superconductivity. However, a vdW layered superconductor with a high transition temperature (Tc) at ambient conditions is still rare. Here, using variable-composition evolutionary structure predictions, we systematically explored the stable compounds in the P-S system up to 20 GPa. Opposed to the complex stoichiometries at ambient conditions, only one compound, PS2, is predicted to be thermodynamically stable above 8 GPa. Strikingly, PS2 is a vdW layered material isostructural to 3R−MoS2 exhibiting a predicted Tc of around 11 K at ambient pressure, both in the bulk ...


Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii May 2019

Phantoms In Science: Nietzsche's Nonobjectivity On Planck's Quanta, Donald Richard Dickerson Iii

Undergraduate Theses

What does Maxwell Planck's concept of phantomness suggest about the epistemological basis of science and how might a Nietzschean critique reveal solution to the weaknesses revealed? With his solution to Kirchoff's equation, Maxwell Planck launched the paradigm of quantum physics. This same solution undermined much of current understandings of science versus pseudoscience. Using Nietzsche's perspectivism and other philosophical critiques, Planck's answer to blackbody radiation is used to highlight the troubles with phantom problems in science and how to try to direct science towards a more holistic and complete scientific approach.


Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt May 2019

Isotopically-Resolved Neutron Cross Sections As Probe Of The Nuclear Optical Potential, Cole Davis Pruitt

Arts & Sciences Electronic Theses and Dissertations

Neutron scattering experiments provide direct access to the forces experienced by nucleons in the nuclear environment. Due to the experimental difficulty of cross section measurements with neutrons, isotopically-resolved neutron scattering cross sections are sorely needed as inputs for many nuclear models. This dissertation presents the results from a campaign of isotope-specific neutron total cross section measurements on 16,18O, 58,64Ni, 112,124Sn, and 103Rh from 3-450 MeV and elastic scattering differential cross section measurements on 112,nat,124Sn at 11 and 17 MeV. Equipped with these new data and with computational improvements to the Dispersive Optical Model (DOM), we ...


Characteristics Of Sulfur Atoms Adsorbed On Ag(100), Ag(110), And Ag(111) As Probed With Scanning Tunneling Microscopy: Experiment And Theory, Peter M. Spurgeon, Da-Jiang Liu, Holly Walen, Junepyo Oh, Hyun Jin Yang, Yousoo Kim, Patricia A. Thiel May 2019

Characteristics Of Sulfur Atoms Adsorbed On Ag(100), Ag(110), And Ag(111) As Probed With Scanning Tunneling Microscopy: Experiment And Theory, Peter M. Spurgeon, Da-Jiang Liu, Holly Walen, Junepyo Oh, Hyun Jin Yang, Yousoo Kim, Patricia A. Thiel

Chemistry Publications

In this paper, we report that S atoms on Ag(100) and Ag(110) exhibit a distinctive range of appearances in scanning tunneling microscopy (STM) images, depending on the sample bias voltage, VS. Progressing from negative to positive VS, the atomic shape can be described as a round protrusion surrounded by a dark halo (sombrero) in which the central protrusion shrinks, leaving only a round depression. This progression resembles that reported previously for S atoms on Cu(100). We test whether DFT can reproduce these shapes and the transition between them, using a modified version of the Lang–Tersoff–Hamann ...


Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer May 2019

Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer

Chemistry Faculty Publications

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed ...


2019 Petersheim Academic Exposition Schedule Of Events, Seton Hall University Apr 2019

2019 Petersheim Academic Exposition Schedule Of Events, Seton Hall University

Petersheim Academic Exposition

2019 Petersheim Academic Exposition


High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms Apr 2019

High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms

Dissertations

Intracavity laser spectroscopy has been used to study the electronic structure of several small molecules. The molecules studied as part of this dissertation include germanium hydride (GeH), copper oxide (CuO), nickel chloride (NiCl), platinum fluoride (PtF), platinum chloride (PtCl), and copper hydroxide (CuOH). This work encompasses five peer-reviewed publications and two submitted manuscripts.


The Effects Of Organic And Inorganic Nanoparticles On Bacterial Deactivation, Lauren Cooper Apr 2019

The Effects Of Organic And Inorganic Nanoparticles On Bacterial Deactivation, Lauren Cooper

Honors College Capstone Experience/Thesis Projects

Antibacterial resistance is one of the greatest problems in modern medicine, as healthcare professionals are experiencing more and more difficulty in providing effective care. As such, alternative methods of treatment are needed in order to overcome this issue. One recently proposed method of alternative treatment is photodynamic therapy. Photodynamic therapy is a light-based method of treatment that utilizes (1) a photosensitizing agent, (2) light, (3) produced oxygen species. When the photosensitizing agent is injected into an infected region of interest and then irradiated with a certain wavelength of light, the agent is photoactivated and begins to produce harmful forms of ...


Mg Assisted Flux Growth And Characterization Of Single Crystalline Sm2co17, Tej Nath Lamichhane, Qisheng Lin, Valentin Taufour, Andriy Palasyuk, Tribhuwan Pandey, David Parker, Sergey L. Bud’Ko, Paul C. Canfield Mar 2019

Mg Assisted Flux Growth And Characterization Of Single Crystalline Sm2co17, Tej Nath Lamichhane, Qisheng Lin, Valentin Taufour, Andriy Palasyuk, Tribhuwan Pandey, David Parker, Sergey L. Bud’Ko, Paul C. Canfield

Ames Laboratory Accepted Manuscripts

This paper presents details of Mg-assisted flux growth of Sm2Co17 single crystals in a Ta crucible well below the melting temperature of binary Sm2Co17. Both the crushed single crystalline powder x-ray diffraction (XRD) and single crystalline XRD data revealed the Th2Zn17 type rhombohedral(R-3m) crystal structure. Ta atom is found to be statistically replacing the Co-Co dumbbell with its position being at the center of the dumbbell. The Curie temperature of our lightly Mg and Ta doped Sm2Co17 sample is determined to be ∼1100 K using method of generalized Bloch law fitting of easy axis spontaneous magnetization data.


Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel Mar 2019

Energetics Of Cu Adsorption And Intercalation At Graphite Step Edges, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

To assess the energetics of Cu intercalation on defective graphite, the chemical potentials and binding energies for Cu at graphite step edges are calculated for three main configurations: an isolated atom, a chain, and an atom attached to a chain. As expected, for Cu interacting directly with a graphite step edge, the strength of interaction depends on the stability of the step, with Cu binding more strongly at a less-stable step. However, the relationship is reversed when considering binding of a Cu atom attached to a chain. Taken together, these trends mean that if the graphite step is less stable ...


Editorial Board Mar 2019

Editorial Board

Karbala International Journal of Modern Science

No abstract provided.


Table Of Contents Mar 2019

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew Feb 2019

Fundamental Limits Of Measuring Single-Molecule Rotational Mobility, Oumeng Zhang, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Various methods exist for measuring molecular orientation, thereby providing insight into biochemical activities at nanoscale. Since fluorescence intensity and not electric field is detected, these methods are limited to measuring even-order moments of molecular orientation. However, any measurement noise, for example photon shot noise, will result in nonzero measurements of any of these even-order moments, thereby causing rotationally-free molecules to appear to be partially constrained. Here, we build a model to quantify measurement errors in rotational mobility. Our theoretical framework enables scientists to choose the optimal single-molecule orientation measurement technique for any desired measurement accuracy and photon budget.


Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram Feb 2019

Viscosities, Diffusion Coefficients, And Mixing Times Of Intrinsic Fluorescent Organic Molecules In Brown Limonene Secondary Organic Aerosol And Tests Of The Stokes–Einstein Equation, Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, Allan K. Bertram

Physics Faculty Publications and Presentations

Viscosities and diffusion rates of organics within secondary organic aerosol (SOA) remain uncertain. Using the bead-mobility technique, we measured viscosities as a function of water activity (aw) of SOA generated by the ozonolysis of limonene followed by browning by exposure to NH3 (referred to as brown limonene SOA or brown LSOA). These measurements together with viscosity measurements reported in the literature show that the viscosity of brown LSOA increases by 3–5 orders of magnitude as the aw decreases from 0.9 to approximately 0.05. In addition, we measured diffusion coefficients of intrinsic fluorescent organic molecules within ...


Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh Jan 2019

Florida Science: The Science That Makes Florida Different, Terence W. Cavanaugh

Secondary Level Resources

This book was created to assist students with their understanding of how science occurs in Florida. When teaching science or any subject it’s important to remember to begin with the concrete and then move to the abstract. I have found that it has helped my students when I begin by teaching science concepts in a concrete manner and expand from there. For example, when I taught about topographic maps, the students were much more successful in their learning when I started with local topographic maps that included the school and the surrounding area than with places that had mountains ...