Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Energy

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 75

Full-Text Articles in Physics

Physics 4900, David Maughan Apr 2019

Physics 4900, David Maughan

Physics Capstone Project

More than a century has passed since Albert Einstein published his general theory of relativity. The theory has been tested many times experimentally, primarily in the relatively weak gravitational fields of the solar system [1,2]. More recently the first experimental results from the strong gravitational fields of two black holes have been measured in the form of gravitational waves, which are another prediction of general relativity. The 2017 Nobel prize in physics was awarded to Kip Thorne, Rainer Weiss, and Barry Barish for their role in the detection of gravitational waves. This year we have seen the first image ...


Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck May 2018

Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck

Senior Theses

The field of thermoelectrics has many applications, and more are found in everyday systems. From its current studies, it is apparent that improving the figure of merit zT (which defines a good thermoelectric material) is important in the effectiveness of power generation. Another important part of thermoelectrics is the duality of these devices. They can both move heat and generate power, depending on their role in the system. In this thesis research, a process was made to test these thermoelectric relationships for a few Peltier devices in order to understand their efficiencies and what systems they can be applied to.


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of ...


Rental Property Energy Efficiency In San Luis Obispo, Zachary Earl Shockley Mar 2018

Rental Property Energy Efficiency In San Luis Obispo, Zachary Earl Shockley

Physics

In the modern era, many people choose to rent homes instead of purchasing a home. College towns have an even more disproportionate number of renters when compared to other cities. The majority of rental properties are much less energy efficient than their owner-occupied counterparts. This project analyzes the energy efficiency issues of rental properties in San Luis Obispo and examines potential ways to remedy these issues. In order to analyze these issues, the guiding principles of building science are first discussed, followed by case studies of rental properties in San Luis Obispo. These case studies examine multiple rental properties and ...


Electronic Structure Properties And Bcs Superconductivity In ß-Pyrochlore Oxides: KoSS2O6, Rolando Saniz, Julia E. Medvedeva, Lin Hui Ye, Tatsuya Shishidou, Arthur J. Freeman Feb 2018

Electronic Structure Properties And Bcs Superconductivity In ß-Pyrochlore Oxides: KoSS2O6, Rolando Saniz, Julia E. Medvedeva, Lin Hui Ye, Tatsuya Shishidou, Arthur J. Freeman

Julia E. Medvedeva

We report a first-principles density-functional calculation of the electronic structure and properties of the recently discovered superconducting β-pyrochlore oxide KOs2O6. We find that the electronic structure near the Fermi energy EF is dominated by strongly hybridized Os 5d and O 2p states. A van Hove singularity very close to Ef leads to a relatively large density of states at EF, and the Fermi surface exhibits strong nesting along several directions. These features could provide the scattering processes leading to the observed anomalous temperature dependence of the resistivity and to the rather large specific-heat mass ...


Isoscalar Ππ; Kk; Ηη Scattering And The Σ; F0; F2 Mesons From Qcd, Raul A. Briceño, Jozef J. Dudek, Robert G. Edwards, David J. Wilson Jan 2018

Isoscalar Ππ; Kk; Ηη Scattering And The Σ; F0; F2 Mesons From Qcd, Raul A. Briceño, Jozef J. Dudek, Robert G. Edwards, David J. Wilson

Physics Faculty Publications

We present the first lattice QCD study of coupled isoscalar ππ;K ¯K; ηη S- and D-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the light quark mass corresponding to mπ ∼ 391 MeV. In the JP = 0+ sector we find analogues of the experimental σ and f0 (980) states, where the σ appears as a stable bound-state below ππ threshold, and, similar to what is seen in experiment, the f0 (980) manifests itself as a dip in the ππ cross section in the vicinity of the K ¯K threshold ...


Gravitationally Induced Quantum Superposition Reduction With Large Extra Dimensions, Jonas R. Mureika Sep 2017

Gravitationally Induced Quantum Superposition Reduction With Large Extra Dimensions, Jonas R. Mureika

Jonas Mureika

A gravity-driven mechanism (``objective reduction'') proposed to explain quantum state reduction is analyzed in light of the possible existence of large extra dimensions in the ADD scenario. By calculating order-of-magnitude estimates for nucleon superpositions, it is shown that if the mechanism at question is correct, constraints may be placed on the number and size of extra dimensions. Hence, measurement of superposition collapse times ({\it e.g.} through diffraction or reflection experiments) could represent a new probe of extra dimensions. The influence of a time-dependent gravitational constant on the gravity-driven collapse scheme with and without the presence of extra dimensions is ...


Problem Set #2, David Peak Aug 2017

Problem Set #2, David Peak

Problems

A little energy and momentum practice (and units)

Problems 1-2 deal with “rest” energy and relativity.


Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar Aug 2017

Raman Spectroscopy Of Oxygen Evolution Catalysts And Psii Manganese Model Compounds, Sergei Shmakov, Daniel A. Hartzler, Alireza Karbakhsh Ravari, Yulia Pushkar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photosynthesis is the basis of life on earth, and oxygen evolution catalysts are key components of this complicated, yet not fully understood process. Photosystem II, a large membrane bound pigment-protein complex, is the key system that facilitates oxygenic photosynthesis via the oxygen evolving complex (a natural oxygen evolving catalyst). It is a key component in oxygen producing catalysts, which can be used in fields such as energy production and biomimetic catalysts. The oxygen evolution cycle, or Kok cycle going within it is still not studied completely. In this project, we were studying the vibrational (and structural) state of a Manganese ...


One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev Jul 2017

One-Step Laser-Induced Hydrogen Generation From Coal Powders In Water, Dovletgeldi Seyitliyev

Masters Theses & Specialist Projects

This study presents a simple way of obtaining hydrogen gas (H2) from various ranks of coal, coke, and graphite using nanosecond laser pulses. Powder samples of coal and graphite with and without water were irradiated with 1064 nm and 532 nm pulses from an Nd: YAG laser for 45 minutes under air and argon atmospheres. It was observed that 532 nm laser pulses were more effective than 1064 nm pulses in gas generation and both were nonlinearly correlated with respect to the laser energy density. Mainly hydrogen (H2) and carbon monoxide (CO) were observed. The H2 to CO ratio shows ...


The Iterative Method For Quantum Double-Well And Symmetry-Breaking Potentials, Nada Alsufyani May 2017

The Iterative Method For Quantum Double-Well And Symmetry-Breaking Potentials, Nada Alsufyani

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Numerical solutions of quantum mechanical problems have witnessed tremendous advances over the past years. In this thesis, we develop an iterative approach to problems of double-well potentials and their variants with parity-time-reversal symmetry- breaking perturbations. We show that the method provides an efficient scheme for obtaining accurate energies and wave functions. We discuss in this thesis potential applications to a variety of related topics such as phase transitions, symmetry breaking, and external field-induced effects.


Dft Investigations Of Hygrogen Storage Materials, Gang Wang Jan 2017

Dft Investigations Of Hygrogen Storage Materials, Gang Wang

Dissertations

Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 ...


The Rise Of Nuclear Energy In Arab States: Future Impacts, Brittany Broder Aug 2016

The Rise Of Nuclear Energy In Arab States: Future Impacts, Brittany Broder

Honors College Capstone Experience/Thesis Projects

The signing of the Iranian nuclear deal during the Summer of 2015 highlighted the threat of nuclear proliferation from foreign powers, but largely overlooked the rise of nuclear energy in the Middle East and North Africa (MENA). With growing energy demands and heightened environmental regulations, countries in this region are turning to nuclear power to fuel their next generation. However, the rise of nuclear power in the MENA region holds serious implications for the future of the area’s energy, economic, and social reforms that have largely gone unexplored as a whole thus far. The purpose of this thesis is ...


Direction Of Lead Diffusion In Geological Samples Using Rutherford Backscattering Sepctrometry, Andrew Mccalmont Jun 2016

Direction Of Lead Diffusion In Geological Samples Using Rutherford Backscattering Sepctrometry, Andrew Mccalmont

Honors Theses

A Rutherford Backscattering (RBS) analysis experiment was performed on several pyrrhotite samples in order to understand their lead (Pb) diffusive properties and determine the diffusion coefficients for Pb into the sample. The pyrrhotite samples were prepared at Rensselaer Polytechnic Institute and were subsequently annealed for one to several days at temperatures on the order of 500–800℃. A 1.1–MV Pelletron Accelerator in the Union College Ion Beam Analysis Laboratory was used to produce beams of 3.3–MeV alpha particles. The beam of alpha particles collided with the samples and the backscattered alpha particles’ energies were detected using ...


General Relativity And Differential Geometry, Harry Hausner Jun 2016

General Relativity And Differential Geometry, Harry Hausner

Honors Theses

N/A


Momentum Transfer To A Simplified Wind Turbine Blade, Myer D. Milbrath May 2016

Momentum Transfer To A Simplified Wind Turbine Blade, Myer D. Milbrath

Honors Theses

This project looks into the potential of simplified simulations as a supplement to wind turbine blade designs. The idea is to take a two-dimensional representation of a wind turbine blade and attempt to use a fluid flow simulation to determine which "aspect ratio" is the most efficient in the transfer of momentum. This is then compared to the current requirements for wind turbine blades to judge how accurate the simulation was. It was found that an aspect ratio of 16.66 percent was most efficient, however when compared to the requirements for a wind turbine blade this ratio only falls ...


Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Steckel, Robert Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer Jan 2016

Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Steckel, Robert Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer

Robert J. Brecha

We analyze the relationship between economic development and energy consumption in the context of greenhouse gas mitigation. The main contribution of this work is to compare estimates of energy thresholds in the form of minimum energy requirements to reach high levels of development with output projections of per capita final energy supply from a group of integrated assessment models (IAMs). Scenarios project that reductions of carbon emissions in developing countries will be achieved not only by means of decreasing the carbon intensity, but also by making a significant break with the historically observed relationship between energy use and economic growth ...


Yoyo Lab (In-Lab), David Abbott Jan 2016

Yoyo Lab (In-Lab), David Abbott

Handouts

No abstract provided.


Yoyo Lab (Prelab), David Abbott Jan 2016

Yoyo Lab (Prelab), David Abbott

Handouts

No abstract provided.


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around ...


Energy Dependence Of , , And Kp Fluctuations In Au + Au Collisions From √SNn=7.7 To 200 Gev, James K. Adkins, Renee H. Fatemi, Suvarna Ramachandran, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, A. Aparin, D. Arkhipkin, E. C. Aschenauer, G. S. Averichev Aug 2015

Energy Dependence Of Kπ, Pπ, And Kp Fluctuations In Au + Au Collisions From √SNn=7.7 To 200 Gev, James K. Adkins, Renee H. Fatemi, Suvarna Ramachandran, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, A. Aparin, D. Arkhipkin, E. C. Aschenauer, G. S. Averichev

Physics and Astronomy Faculty Publications

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the BNL Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical , , and Kp fluctuations as measured by the STAR experiment in central 0–5% Au + Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn ...


Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti Dec 2014

Analysis And Optimization Of The Scheffler Solar Concentrator, Simone Alberti

Master's Theses and Project Reports

The Scheffler reflector is a new solar concentrator design which maintains a fixed focus while only having a single axis tracking mechanism. This design makes the construction and operation of high temperature solar concentrators accessible to developing nations. In this project, I wrote computer simulation codes to better understand the dynamics and the effect of deformation or deviations from ideal conditions in order to define necessary manufacturing and operational tolerances. These tools and knowledge drove the prototyping of new reflector concepts by myself and other students on my team. A fiberglass prototype was able to drive the cost of a ...


14 Conservation Of Energy, Charles G. Torre Aug 2014

14 Conservation Of Energy, Charles G. Torre

Foundations of Wave Phenomena

After all of these developments it is nice to keep in mind the idea that the wave equation describes (a continuum limit of) a network of coupled oscillators. This raises an interesting question. Certainly you have seen by now how important energy and momentum — and their conservation — are for understanding the behavior of dynamical systems such as an oscillator. If a wave is essentially the collective motion of many oscillators, might not there be a notion of conserved energy and momentum for waves? If you’ve ever been to the beach and swam in the ocean you know that waves ...


Investigating The Proposed Affordances And Limitations Of The Substance Metaphor For Energy, Lisa Goodhew Jun 2014

Investigating The Proposed Affordances And Limitations Of The Substance Metaphor For Energy, Lisa Goodhew

Honors Projects

This study explores the instructional advantages and disadvantages of representing energy as a material substance; this is done in the context of a computer simulation that illustrates processes of energy transfer and transformation. These affordances and limitations have been proposed in science education literature as extensions of the substance metaphor itself, but there is little empirical evidence to support them. This study is intended to provide preliminary empirical evidence for these affordances and limitations. We examine data from eight interviews conducted with students from Seattle Pacific University’s introductory physics classes as they used the simulation. We explore the hypotheses ...


A Comparative Study Of Gupix And Geopixe Software In The Analysis Of Pixe Spectra Of Aerosol Samples, Sean Collison Jun 2014

A Comparative Study Of Gupix And Geopixe Software In The Analysis Of Pixe Spectra Of Aerosol Samples, Sean Collison

Honors Theses

Proton-induced X-ray emission (PIXE) spectroscopy is a powerful tool used in the Union College Ion-Beam Analysis Laboratory for the elemental analysis of environmental pollution. Samples are bombarded with proton beams from the 1.1‐MV Pelletron accelerator and characteristic X-rays emitted from the samples are detected, resulting in X-ray energy spectra. These spectra are analyzed using software packages that fit the data and calculate the concentrations of elements in the samples. I have performed a comparative study of two of the most popular software packages, GUPIX and GeoPIXE, in the analysis of atmospheric aerosol samples to assess the strengths and ...


Manufacture And Investigation Of Organic Composite Polymer Based Films For Advanced Flexible Solar Cells, Raffie Arshak Dec 2013

Manufacture And Investigation Of Organic Composite Polymer Based Films For Advanced Flexible Solar Cells, Raffie Arshak

Masters

Modern society has created big challenges in the area of sustainable supply of energy to satisfy the needs of growing population and to account for depleting fossil fuel resources. The Irish Government has set targets for the energy sector by 2020, with 33% of electricity to be generated from renewable sources. Organic photovoltaic devices offer several advantages over expensive silicon solar cells, including deposition of ultra-thin films by spin-coating, printing and spray-coating. This in turn provides for the exciting possibility to make lightweight, flexible solar cells for a broad range of existing and emerging applications for security, military and medicine ...


Finite Molecular Anchoring In The Escaped-Radial Nematic Configuration: A 2-H-Nmr Study, G. P. Crawford, David W. Allender, J. William Doane, M. Vilfan, I. Vilfan Oct 2013

Finite Molecular Anchoring In The Escaped-Radial Nematic Configuration: A 2-H-Nmr Study, G. P. Crawford, David W. Allender, J. William Doane, M. Vilfan, I. Vilfan

David W Allender

The director-field configuration of a nematic liquid crystal confined to cylindrical cavities of polycarbonate Nuclepore membranes ranging from 0.3 to 0.05-mu-m in radius is determined using deuterium nuclear magnetic resonance (H-2 NMR). Spectral patterns from cavities of radius 0.3-mu-m reveal the escaped-radial configuration with singular point defects, but as the cylinder size is decreased, the elastic energy imposed by the curvature of the confining walls competes with the anchoring energy to tilt the directors away from their preferred perpendicular anchoring direction, preventing the expected transition to the planar-radial configuration. A surface fitting parameter is directly determined by ...


Electron Energy Dependent Charging Effects Of Multilayered Dielectric Materials, Gregory Wilson, Jr Dennison, Amberly Evans, Justin Dekany Aug 2013

Electron Energy Dependent Charging Effects Of Multilayered Dielectric Materials, Gregory Wilson, Jr Dennison, Amberly Evans, Justin Dekany

Gregory Wilson

Measurements of the charge distribution in electron-bombarded, thin-film, multilayer dielectric samples showed that charging of multilayered materials evolves with time and is highly dependent on incident energy; this is driven by electron penetration depth, electron emission and material conductivity. Based on the net surface potential’s dependence on beam current, electron range, electron emission and conductivity, measurements of the surface potential, displacement current and beam energy allow the charge distribution to be inferred. To take these measurements, a thin-film disordered SiO2 structure with a conductive middle layer was charged using 200 eV and 5 keV electron beams with regular 15 ...


Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, Jr Dennison Aug 2013

Approximation Of Range In Materials As A Function Of Incident Electron Energy, Gregory Wilson, Jr Dennison

Gregory Wilson

A simple composite analytic expression has been developed to approximate the electron range in materials. The expression is applicable over more than six orders of magnitude in energy (<10 eV to >10 MeV) and range (10-9 m to 10-2 m), with uncertainty of ≤20% for most conducting, semiconducting and insulating materials. This is accomplished by fitting data from two standard NIST databases [ESTAR for the higher energy range and the electron IMFP (inelastic mean free path) for the lower energies]. In turn, these data have been fit with well-established semi-empirical models for range and IMFP that are related to standard materials properties (e ...


Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Christof Steckel, Robert J. Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer Jun 2013

Development Without Energy? Assessing Future Scenarios Of Energy Consumption In Developing Countries, Jan Christof Steckel, Robert J. Brecha, Michael Jakob, Jessica Strefler, Gunnar Luderer

Physics Faculty Publications

We analyze the relationship between economic development and energy consumption in the context of greenhouse gas mitigation. The main contribution of this work is to compare estimates of energy thresholds in the form of minimum energy requirements to reach high levels of development with output projections of per capita final energy supply from a group of integrated assessment models (IAMs). Scenarios project that reductions of carbon emissions in developing countries will be achieved not only by means of decreasing the carbon intensity, but also by making a significant break with the historically observed relationship between energy use and economic growth ...