Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses and Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 903

Full-Text Articles in Physics

Topics In Gravitational Wave Physics, Aaron David Johnson Jul 2020

Topics In Gravitational Wave Physics, Aaron David Johnson

Theses and Dissertations

We begin with a brief introduction to gravitational waves. Next we look into the origin of the Chandrasekhar transformations between the different equations found by perturbing a Schwarzschild black hole. Some of the relationships turn out to be Darboux transformations. Then we turn to GW150914, the first detected black hole binary system, to see if the nonlinear memory might be detectable by current and future detectors. Finally, we develop an updated code for computing equatorial extreme mass ratio inspirals which will be open sourced as soon as it has been generalized for arbitrary inclinations.


A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan May 2020

A Study Of Optical Nonlinearities At The Single-Photon Level For Quantum Logic, Balakrishnan Viswanathan

Theses and Dissertations

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical schemes to construct a conditional phase gate at the single-photon level. With an aim to develop analytical models, we shall carry out a rigorous quantized multimode field analysis of some of these schemes involving only the interacting field operators. More specifically, we shall first study the three-wave mixing process involving two single-photons in a second-order nonlinear medium (x(2)) under two different cases viz. when the photons are traveling with equal velocities and when they are traveling with different velocities, and explore the possibility of using them for ...


Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman May 2020

Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman

Theses and Dissertations

The objective of this research is to design a larger submicron linear polarizer in the near-infrared wavelength range with a wide bandwidth which can be fabricated using the conventional thin-film microfabrication technology to reduce cost. For this purpose, a gold (Au) wire-grid transmission-type transverse-magnetic (TM) polarizer and a silicon (Si) wire-grid reflection-type TM polarizer, were designed using the guided-mode-resonance filter. The Au wire-grid TM polarizer of 700nm grating width and 1200nm grating period has 95% transmittance at 2400nm, more than 1000nm resonance peak bandwidth, and an extinction ratio (ER) of around 300 with a moderated level of sidebands. The 700nm ...


What Can Scattered Light Tell You About Your Favorite Magnetic Material?: A Magneto Optical Investigation Of The Magnetic Properties Of Aligned Janus Fiber Agglomerates.Influence Of Dynamic Multiaxial Transverse Loading On Ultrahigh Molecular Weight Polyethylene Single Fiber Failure, Cory John Dolbashian Apr 2020

What Can Scattered Light Tell You About Your Favorite Magnetic Material?: A Magneto Optical Investigation Of The Magnetic Properties Of Aligned Janus Fiber Agglomerates.Influence Of Dynamic Multiaxial Transverse Loading On Ultrahigh Molecular Weight Polyethylene Single Fiber Failure, Cory John Dolbashian

Theses and Dissertations

Here we seek to take a traditional Magneto Optic Kerr Effect (MOKE) experimental design, useful for local magnetization measurements, and apply it to measuring aligned multiferroic Janus nano fiber agglomerates. In order to achieve this we modify the traditional MOKE geometry by measuring our Kerr rotation from collimated scattered light, rather than the conventional specular reflection. Using various techniques to improve signal to noise ratio (SNR), we extend the application of this scattered MOKE geometry to build families of First Order Reversal Curves (FORC). Using an alternative analysis technique, FORC curves are processed and become a FORC diagram, which is ...


Probing The Interstellar Medium Of Galaxies Using Gravitationally Lensed Sight Lines And The Relevant Atomic Physics, Frances Cashman Apr 2020

Probing The Interstellar Medium Of Galaxies Using Gravitationally Lensed Sight Lines And The Relevant Atomic Physics, Frances Cashman

Theses and Dissertations

Absorption spectroscopy of gravitationally lensed quasars (GLQs) enables study of spatial variations in the interstellar and/or circumgalactic medium (ISM, CGM) of foreground galaxies. In this work I present observations of 4 GLQs, each with two images separated by 0.8-3.000, that show strong absorbers at redshifts 0.4 abs< 1.3 in their spectra, including some at the lens redshift. The H I Lyman lines were measured in five absorbers using HST-STIS, and metal lines with either the MagE spectrograph or the Sloan Digital Sky Survey. These data, combined with the literature, show no strong correlation between absolute values of differences in NH I, NFe II, or [Fe/H] and sight line separations at absorber redshifts. The measured abundance gradients show a tentative anti-correlation with abundances at galaxy centers.

A study of the lens galaxy foreground to the doubly lensed quasar SBS 0909+532 reveals a large difference in H I and metal column densities between sight lines. Using archival HST-STIS and Keck HIRES spectra, log N H I 18.18 cm−2 and log N H I ...


One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown Mar 2020

One-Dimensional Multi-Frame Blind Deconvolution Using Astronomical Data For Spatially Separable Objects, Marc R. Brown

Theses and Dissertations

Blind deconvolution is used to complete missions to detect adversary assets in space and to defend the nation's assets. A new algorithm was developed to perform blind deconvolution for objects that are spatially separable using multiple frames of data. This new one-dimensional approach uses the expectation-maximization algorithm to blindly deconvolve spatially separable objects. This object separation reduces the size of the object matrix from an NxN matrix to two singular vectors of length N. With limited knowledge of the object and point spread function the one-dimensional algorithm successfully deconvolved the objects in both simulated and laboratory data.


Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen Mar 2020

Laser Shock Peening Pressure Impulse Determination Via Empirical Data-Matching With Optimization Software, Colin C. Engebretsen

Theses and Dissertations

Laser shock peening (LSP) is a form of work hardening by means of laser induced pressure impulse. LSP imparts compressive residual stresses which can improve fatigue life of metallic alloys for structural use. The finite element modeling (FEM) of LSP is typically done by applying an assumed pressure impulse, as useful experimental measurement of this pressure impulse has not been adequately accomplished. This shortfall in the field is a current limitation to the accuracy of FE modeling, and was addressed in the current work. A novel method was tested to determine the pressure impulse shape in time and space by ...


Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero Mar 2020

Solving Combinatorial Optimization Problems Using The Quantum Approximation Optimization Algorithm, Nicholas J. Guerrero

Theses and Dissertations

The Quantum Approximation Optimization Algorithm (QAOA) is one of the most promising applications for noisy intermediate-scale quantum machines due to the low number of qubits required as well as the relatively low gate count. Much work has been done on QAOA regarding algorithm implementation and development; less has been done checking how these algorithms actually perform on a real quantum computer. Using the IBM Q Network, several instances of combinatorial optimization problems (the max cut problem and dominating set problem) were implemented into QAOA and analyzed. It was found that only the smallest toy max cut algorithms performed adequately: those ...


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on the ...


Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter Mar 2020

Conduction Mapping For Quality Control Of Laser Powder Bed Fusion Additive Manufacturing, Chance M. Baxter

Theses and Dissertations

A process was developed to identify potential defects in previous layers of Selective Laser Melting (SLM) Powder Bed Fusion (PBF) 3D printed metal parts using a mid-IR thermal camera to track infrared 3.8-4 m band emission over time as the part cooled to ambient temperature. Efforts focused on identifying anomalies in thermal conduction. To simplify the approach and reduce the need for significant computation, no attempts were made to calibrate measured intensity, extract surface temperature, apply machine learning, or compare measured cool-down behavior to computer model predictions. Raw intensity cool-down curves were fit to a simplified functional form designed ...


Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt Mar 2020

Validation Of Hts Optical Turbulence Profiling Via Sonic Anemometry, Alexander S. Boeckenstedt

Theses and Dissertations

Previous turbulence measurements along a near-ground, 500 m, horizontal path using two helium-neon laser beacons and Hartmann Turbulence Sensor (HTS) yielded profiles of C2n by measuring local aberrated wavefront tilts. The HTS C2n estimates were consistent with integrated turbulence values collected along the same path by a BLS900 scintillometer. Further validation of the HTS profiling method is necessary to produce accurate optical turbulence profiles for wavefront correction and to eventually gain an improved understanding of turbulence in the lower atmosphere and its variation as a function of altitude. In order to add confidence to the HTS ...


Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key Mar 2020

Laser Induced Thermal Degradation Of Carbon Fiber-Carbon Nanotube Hybrid Laminates, Joshua A. Key

Theses and Dissertations

Recent advancements in fiber laser technology have increased interest in target material interactions and the development of thermal protection layers for tactical laser defense. A significant material of interest is carbon fiber reinforced polymers due to their increased use in aircraft construction. In this work, the thermal response of carbon fiber-carbon nanotube (CNT) hybrid composites exposed to average irradiances of 0.87-6.8 W/cm2 were observed using a FLIR sc6900 thermal camera. The camera had a pixel resolution of 640x512 which resulted in a spatial resolution of 0.394x0.383 mm/pixel for the front and 0.463x0 ...


Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman Mar 2020

Measurement Of The 160Gd(P,N)160Tb Excitation Function From 4 18 Mev, Using A Stacked Foil Technique, Ryan K. Chapman

Theses and Dissertations

A stack of thin Gd, Ti, and Cu foils were irradiated with an 18 MeV proton beam at Lawrence-Berkeley National Laboratory's 88-Inch Cyclotron to investigate the 160Gd(p,n)160Tb nuclear reaction for nuclear forensics applications. This experiment will improve knowledge of 160Tb production rates, allowing 160Tb to be efficiently created in a foil stack consisting of other proton induced isotopes for forensics applications. A set of 15 measured cross sections between 4-18 MeV for 160Gd(p,n)160Tb were obtained using a stacked foil technique. The foil stack consisted of one stainless ...


Determining Bulk Aerosol Absorption From Off Axis Backscattering Using Rayleigh Beacon Laser Pulses, Julie C. Grossnickle Mar 2020

Determining Bulk Aerosol Absorption From Off Axis Backscattering Using Rayleigh Beacon Laser Pulses, Julie C. Grossnickle

Theses and Dissertations

Aerosol absorption and scattering can play a key role in degrading high energy laser performance in the form of thermal blooming and beam attenuation. Aerosol absorption properties are not completely understood, and thus affect how we are able to quantify expected high energy laser weapon performance. The Air Force Institute of Technology Center for Directed Energy (AFIT CDE) developed both Laser Environmental Effects Definition and Reference (LEEDR) and the High Energy Laser End-to-End Operational Simulation (HELEEOS) code to characterize atmospheric radiative transfer effects and evaluate expected directed energy weapon system performance. These packages enable modeling of total irradiance at given ...


Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao Mar 2020

Rapid Analysis Of Plutonium Surrogate Material Via Hand-Held Laser-Induced Breakdown Spectroscopy, Ashwin P. Rao

Theses and Dissertations

This work investigated the capability of a portable LIBS device to detect and quantify dopants in plutonium surrogate alloys, specifically gallium, which is a common stabilizer used in plutonium alloys. The SciAps Z500-ER was utilized to collect spectral data from cerium-gallium alloys of varying gallium concentrations. Calibration models were built to process spectra from the Ce-Ga alloys and calculate gallium concentration from spectral emission intensities. Univariate and multivariate analysis techniques were used to determine limits of detection of different emission line ratios. Spatial mapping measurements were conducted to determine the device's ability to detect variations in gallium concentration on ...


Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachael L. Wolfgang Mar 2020

Comparison Of The Accuracy Of Rayleigh-Rice Polarization Factors To Improve Microfacet Brdf Models, Rachael L. Wolfgang

Theses and Dissertations

Microfacet BRDF models assume that a surface has many small microfacets making up the roughness of the surface. Despite their computational simplicity in applications in remote sensing and scene generation, microfacet models lack the physical accuracy of wave optics models. In a previous work, Butler proposed to replace the Fresnel reflectance term of microfacet models with the Rayleigh-Rice polarization factor, Q, to create a more accurate model. This work examines the novel model that combines microfacet and wave optics terms for its accuracy in the pp and ss polarized cases individually. The model is fitted to the polarized data in ...


Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson Mar 2020

Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson

Theses and Dissertations

There is currently a lack of research into how the atmosphere effects Zernike piston. This Zernike piston is a coefficient related to the average phase delay of a wave. Usually Zernike piston can be ignored over a single aperture because it is merely a delay added to the entire wavefront. For multi-aperture interferometers though piston cannot be ignored. The statistics of Zernike piston could supplement and improve atmospheric monitoring, adaptive optics, stellar interferometers, and fringe tracking. This research will focus on developing a statistical model for Zernike piston introduced by atmospheric turbulence.


Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce Mar 2020

Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce

Theses and Dissertations

An experimental study was conducted on the nanosecond pulsed laser ablation of graphite using a KrF laser at a fluence of 3.8 J/cm2 in Air, Ar, He, and N2. Optical emissions spectroscopy revealed the C2 Swan sequences and the CN Violet sequences. A spectroscopic model was developed to extract the molecular rotational and vibrational temperatures of each excited species for t=0.5-10 microseconds after laser irradiation. The rovibrational temperatures were found to vary with background gas for the CN Violet; however, only the vibrational temperature varied between He and the other background gases for ...


Verification Of The Vertical Bubble Flow Experiments, Reginald Jones Ii Jan 2020

Verification Of The Vertical Bubble Flow Experiments, Reginald Jones Ii

Theses and Dissertations

Detailed experimental design to support basic pedagogy of flow regimes – single phase liquid, bubbly, slug, annular, dispersed droplet, and single phase vapor – occurring in flow channels of nuclear reactors has been developed for EGMN 203 - Nuclear Engineering Practicum offering at Virginia Commonwealth University’s Department of Mechanical and Nuclear Engineering. The laboratory instruction will be used to help students forming ideas and understanding flow regimes occurring in nuclear engineering applications. We designed and constructed four water columns to act as surrogates for water channels in a nuclear reactor. Each column was used for a different experiment: salted versus unsalted water ...


Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya Jan 2020

Electric Field Control Of Fixed Magnetic Skyrmions For Energy Efficient Nanomagnetic Memory, Dhritiman Bhattacharya

Theses and Dissertations

To meet the ever-growing demand of faster and smaller computers, increasing number of transistors are needed in the same chip area. Unfortunately, Silicon based transistors have almost reached their miniaturization limits mainly due to excessive heat generation. Nanomagnetic devices are one of the most promising alternatives of CMOS. In nanomagnetic devices, electron spin, instead of charge, is the information carrier. Hence, these devices are non-volatile: information can be stored in these devices without needing any external power which could enable computing architectures beyond traditional von-Neumann computing. Additionally, these devices are also expected to be more energy efficient than CMOS devices ...


Application Of Optical Trapping To Obtain Single-Source Str Profiles From Forensically Relevant Body Fluid Mixtures With Modified Dna Analysis Workflow, Benjamin J. O'Brien Jan 2020

Application Of Optical Trapping To Obtain Single-Source Str Profiles From Forensically Relevant Body Fluid Mixtures With Modified Dna Analysis Workflow, Benjamin J. O'Brien

Theses and Dissertations

Current methods of mixture separation in forensic DNA laboratories typically deconvolute the mixture after analysis using statistical analysis or probabilistic genotyping. To save time and effort of labs already backlogged, a method to separate mixtures on a cellular level before analysis needs to be developed. Optical trapping is a method that uses a focused 1064 nm laser to manipulate cells. Previous research has shown that approximately 50 spermatozoa or 15 leukocytes from a liquid sample are required to produce a full STR DNA profile. It was found that the number of spermatozoa required remains constant when the method of sample ...


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare ...


Theoretical Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Transition-Metal Based Compounds, Haleoot Edaan Raad Dec 2019

Theoretical Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Transition-Metal Based Compounds, Haleoot Edaan Raad

Theses and Dissertations

The electronic, magnetic, and thermoelectric properties of transition-metal based compounds were investigated by using the density functional theory and Boltzmann transport formalism. It was found that the Co-based Heusler compounds and InSe monochalcogenide are among the materials that may be used for future thermoelectric devices. Furthermore, the investigation showed that the quaternary Heusler compounds, such as, CoFeYGe, where Y is Ti or Cr, are half-metallic ferromagnetic materials with full electron spin polarization. The lattice thermal conductivity (κL) was found to decrease for these alloys as the temperature increases. The present investigation indicated that the phonon optical modes have a major ...


Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming Oct 2019

Nonlinear Characterizing Of A New Titanium Nitride On Aluminum Oxide Metalens, Michael A. Cumming

Theses and Dissertations

A sample metalens generated from Titanium Nitride deposited onto Aluminum Oxide was designed to focus at 10 microns with a beam centered at 800nm, and when analyzed with high intensity illumination was found to have a focal length of 9.650 ±.003µm at an intensity of 16.93[MW/cm2 ]. Analyzing this change by comparing it to a Fresnel Lens’ physics shows that for this lens, the effective nonlinear index of refraction is certainly greater than the nonlinear index of just Titanium Nitride itself, at −1.6239 × 10−15[m2/W] compared to the materials −1.3 × 10 ...


Numerical Simulation Of Unstable Laser Resonators With A High Gain Medium, Robert L. Lloyd Sep 2019

Numerical Simulation Of Unstable Laser Resonators With A High Gain Medium, Robert L. Lloyd

Theses and Dissertations

This research focused on the numeric simulation of unstable laser resonators with high gain media. In order to accomplish the research, the modes and eigenvalues for various bare cavity resonator were computed followed by modes of a resonator in the presence of gain. Using a Fourier Split Step Method in a Fox and Li iteration scheme, different laser outputs for various laser cavities with gain were computed. Various parameters defining positive branch confocal unstable resonators were chosen corresponding to four studies. The four studies focused on modifying laser cavity Fresnel number, gain medium parameters, gain cell position, and gain cell ...


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency ...


On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom Aug 2019

On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom

Theses and Dissertations

This dissertation covers pulsed laser ablation of Al, Si, Ti, Ge, and InSb, with pulse durations from tens of picosecond to hundreds of microseconds, fluences from ones of J/cm2 to over 10,000 J/cm2, and in ambient air and vacuum. A set of non-dimensional scaling factors was created to interpret the data relative to the laser and material parameters, and it was found that pulse durations shorter than a critical timescale formed craters much larger than the thermal diffusion length, and longer pulse durations created holes much shallower than the thermal diffusion length. Low transverse order ...


Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace Aug 2019

Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace

Theses and Dissertations

Microscale beams of germanium ions were used to target different locations of aluminum galliumnitride/gallium nitride (AlGaN/GaN) high electron mobility transistors (HEMTs) to determine location dependent radiation effects. 1.7 MeV Ge ions were targeted at the gap between the gate and the drain to observe displacement damage effects while 47 MeV Ge ions were targeted at the gate to observe ionization damage effects. Electrical data was taken pre, during, and post irradiation. To separate transient from permanent degradation, the devices were characterized after a room temperature anneal for at least 30 days. Optical images were also analyzed pre ...


Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag Aug 2019

Possible Schemes For A Single Photon Switch, Hemlin Swaran Rag

Theses and Dissertations

I consider the effectiveness of a single control photon to route a target photon using two processes: the first one uses the transient excitation of a two-level system and the second one which uses the permanent population transfer in a three-level Λ-system to route the target photon. In the absence of a single control photon and when the system has additional decay channels, I find ways to optimize the success probability of routing with an increasing number of photons in the control field.


Impact Of Excitation-Inhibition Balance/Imbalance On Dynamics Of Cortical Neural Networks, Vidit Agrawal Aug 2019

Impact Of Excitation-Inhibition Balance/Imbalance On Dynamics Of Cortical Neural Networks, Vidit Agrawal

Theses and Dissertations

The purpose of this research is to study the implications of Excitation/Inhibition balance and imbalance on the dynamics of ongoing (spontaneous) neural activity in the cerebral cortex region of the brain.

The first research work addresses the question that why among the continuum of Excitation-Inhibition balance configurations, particular configuration should be favored? We calculate the entropy of neural network dynamics by studying an analytically tractable network of binary neurons. Our main result from this work is that the entropy maximizes at regime which is neither excitation-dominant nor inhibition-dominant but at the boundary of both. Along this boundary we see ...