Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 1842

Full-Text Articles in Physics

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft Feb 2024

Two-Photon Absorption And Fluorescence Of Cadmium Sulfide, Jacob Goranson, Gregory J. Taft

Physics Faculty Publications

The two-photon absorption and fluorescence of bulk cadmium sulfide were studied using 50-fs, 800-nm pulses from an unamplified Ti:sapphire laser. The fluorescence spectrum was measured to have a main peak at 522 nm, and the power of the fluorescence was shown to vary quadratically with the 800-nm beam power. This supports the theory that the fluorescence is excited by two-photon absorption and confirms previous work done with longer duration, higher energy excitation pulses. Pump-probe measurements provided additional confirmation of the two-photon absorption. Measured spectral broadening of the wings of the laser spectrum also was observed, which likely is due to …


Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao Jan 2024

Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao

Physics Faculty Publications

We outline an approach to calculate the transverse-momentum-dependent distribution of linearly polarized gluons inside an unpolarized hadron on the lattice with the help of large momentum effective theory. To achieve this purpose, we propose calculating a Euclidean version of the degree of polarization for a fast-moving hadron on the lattice, which is ultraviolet finite, and no soft function subtraction is needed. It indicates a practical way to explore the distribution of the linearly polarized gluons in a proton and the linearly polarized gluon effects in hadron collisions on the lattice.


Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White Jan 2024

Accelerating Markov Chain Monte Carlo Sampling With Diffusion Models, N. T. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. W. Thomas, M. J. White

Physics Faculty Publications

Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the …


A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn Jan 2024

A Formalism For Extracting Track Functions From Jet Measurements, Kyle Lee, Ian Moult, Felix Ringer, Wouter J. Waalewijn

Physics Faculty Publications

The continued success of the jet substructure program will require widespread use of tracking information to enable increasingly precise measurements of a broader class of observables. The recent reformulation of jet substructure in terms of energy correlators has simplified the incorporation of universal non-perturbative matrix elements, so called “track functions”, in jet substructure calculations. These advances make it timely to understand how these universal non-perturbative functions can be extracted from hadron collider data, which is complicated by the use jet algorithms. In this paper we introduce a new class of jet functions, which we call (semi-inclusive) track jet functions, which …


Double Distributions And Pseudodistributions, A. V. Radyushkin Jan 2024

Double Distributions And Pseudodistributions, A. V. Radyushkin

Physics Faculty Publications

We describe the approach to lattice extraction of generalized parton distributions (GPDs) that is based on the use of the double distribution (DD) formalism within the pseudodistribution framework. The advantage of using DDs is that GPDs obtained in this way have the mandatory polynomiality property, a nontrivial correlation between 𝓍 and ξ dependences of GPDs. Another advantage of using DDs is that the D-term appears as an independent entity in the DD formalism rather than a part of GPDs H and E. We relate the ξ dependence of GPDs to the width of the α profiles of the corresponding DDs …


Microstructure-Based Modeling Of Primary Cilia Mechanics, Nima Mostafazadeh, Andrew Resnick, Y.-N. Young, Zhangli Peng Jan 2024

Microstructure-Based Modeling Of Primary Cilia Mechanics, Nima Mostafazadeh, Andrew Resnick, Y.-N. Young, Zhangli Peng

Physics Faculty Publications

A primary cilium, made of nine microtubule doublets enclosed in a cilium membrane, is a mechanosensing organelle that bends under an external mechanical load and sends an intracellular signal through transmembrane proteins activated by cilium bending. The nine microtubule doublets are the main load-bearing structural component, while the transmembrane proteins on the cilium membrane are the main sensing component. No distinction was made between these two components in all existing models, where the stress calculated from the structural component (nine microtubule doublets) was used to explain the sensing location, which may be totally misleading. For the first time, we developed …


Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich Jan 2024

Magneto-Thermal Limitations In Superconducting Cavities At High Radio-Frequency Fields, I. Parajuli, G. Ciovati, A. Gurevich

Physics Faculty Publications

The performance of superconducting radio-frequency Nb cavities at high radio-frequency (rf) fields in the absence of field emission can be limited by either a sharp decrease of the quality factor Q0(Bp) above peak surface magnetic fields Bp ∼100 mT or by a quench. We have measured Q0(Bp) at 2 K of several 1.3 GHz single-cell Nb cavities with different grain sizes, and with different ambient magnetic fields and cooldown rates below the critical temperature. Temperature mapping and a novel magnetic field mapping systems were used to find the location of “hot-spots” …


Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al. Jan 2024

Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al.

Physics Faculty Publications

The new experimental measurements of beam spin asymmetry were performed for the deeply virtual exclusive π0 production in a wide kinematic region with the photon virtualities Q2 up to 6.6 GeV2and the Bjorken scaling variable 𝓍B in the valence regime. The data were collected by the CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab with longitudinally polarized 10.6 GeV electrons scattered on an unpolarized liquid-hydrogen target. Sizable asymmetry values indicate a substantial contribution from transverse virtual photon amplitudes to the polarized structure functions. The interpretation of these measurements in terms of the Generalized Parton Distributions …


Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers Jan 2024

Definition Of Fragmentation Functions And The Violation Of Sum Rules, John Collins, Ted C. Rogers

Physics Faculty Publications

We point out a problem with the formulation and derivations of sum rules for quark fragmentation functions that impacts their validity in QCD, but which potentially points toward an improved understanding of final states in inclusive hard processes. Fragmentation functions give the distribution of final-state hadrons arising from a parton exiting a hard scattering, and the sum rules for momentum, electric charge, etc. express conservation of these quantities. The problem arises from a mismatch between the quark quantum numbers of the initial quark and the fact that all observed final-state hadrons are confined bound states with color zero. We point …


A Compton Transmission Polarimeter For Dc And Srf Electron Photo-Injectors, G. Blume, M. Bruker, C. Cuevas, H. Dong, Benjamin Fernandes Neres, P. Ghoshal, S. Gopinath, J. Grames, S. Gregory, G. Hays, C. Le Galliard, Sylvain Marsillac, B. Moffit, Thi Nguyen Trung, M. Poelker, R. Suleiman, E. Voutier, S. Zhang Jan 2024

A Compton Transmission Polarimeter For Dc And Srf Electron Photo-Injectors, G. Blume, M. Bruker, C. Cuevas, H. Dong, Benjamin Fernandes Neres, P. Ghoshal, S. Gopinath, J. Grames, S. Gregory, G. Hays, C. Le Galliard, Sylvain Marsillac, B. Moffit, Thi Nguyen Trung, M. Poelker, R. Suleiman, E. Voutier, S. Zhang

Physics Faculty Publications

A polarimeter was constructed to measure the longitudinal polarization of a spin-polarized electron beam at 5 and 7 MeV. The polarimeter takes advantage of Compton scattering between circularly polarized bremsstrahlung photons produced by a longitudinally polarized electron beam striking a copper radiator and the spin-polarized electrons orbiting the iron atoms of an analyzing magnet. This so-called Compton transmission polarimeter is compact and relatively inexpensive compared to Mott-scattering polarimeters because no spin manipulator is required. This work presents the design of the radiator, analyzing magnet, photon detector assembly, and data acquisition system of the Compton transmission polarimeter as well as beam …


Gluon Helicity From Global Analysis Of Experimental Data And Lattice Qcd Ioffe Time Distributions, J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qui, D. G. Richards, N. Sato, S. Zafeiropoulos, Jefferson Lab Angular Momentum And Hadstruc Collaboration Jan 2024

Gluon Helicity From Global Analysis Of Experimental Data And Lattice Qcd Ioffe Time Distributions, J. Karpie, R. M. Whitehill, W. Melnitchouk, C. Monahan, K. Orginos, J.-W. Qui, D. G. Richards, N. Sato, S. Zafeiropoulos, Jefferson Lab Angular Momentum And Hadstruc Collaboration

Physics Faculty Publications

We perform a new global analysis of spin-dependent parton distribution functions with the inclusion of Ioffe time pseudodistributions computed in lattice QCD (LQCD), which are directly sensitive to the gluon helicity distribution, Δg. These lattice data have an analogous relationship to parton distributions as do experimental cross sections, and can be readily included in global analyses. We focus in particular on the constraining capability of current LQCD data on the sign of Δg at intermediate parton momentum fractions x, which was recently brought into question by analysis of data in the absence of parton positivity constraints. …


Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo Dec 2023

Formulation Of Causality-Preserving Quantum Time Of Arrival Theory, Denny Lane B. Sombillo, Neris I. Sombillo

Physics Faculty Publications

We revisit the quantum correction to the classical time of arrival to address the unphysical instantaneous arrival in the limit of zero initial momentum. In this study, we show that the vanishing of arrival time is due to the contamination of the causality-violating component of the initial wave packet. Motivated by this observation, we propose to update the temporal collapse mechanism in Galapon (2009) [18] to incorporate the removal of causality-violating spectra of the arrival time operator. We found that the quantum correction to the classical arrival time is still observed. Thus, our analysis validates that the correction is an …


Non-Singlet Quark Helicity Pdfs Of The Nucleon From Pseudo-Distributions, Robert Edwards, Colin Egerer, Joseph Karpie, Nikhil Karthik, Christopher Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2023

Non-Singlet Quark Helicity Pdfs Of The Nucleon From Pseudo-Distributions, Robert Edwards, Colin Egerer, Joseph Karpie, Nikhil Karthik, Christopher Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

The non-singlet helicity quark parton distribution functions (PDFs) of the nucleon are determined from lattice QCD, by jointly leveraging pseudo-distributions and the distillation spatial smearing paradigm. A Lorentz decomposition of appropriately isolated space-like matrix elements reveals pseudo-distributions that contain information on the leading-twist helicity PDFs, as well as an invariant amplitude that induces an additional z2 contamination of the leading-twist signal. An analysis of the short-distance behavior of the space-like matrix elements using matching coefficients computed to next-to-leading order (NLO) exposes the desired PDF up to this additional z2 contamination. Due to the non-conservation of the axial current, …


Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao Jan 2023

Neutrino-Tagged Jets At The Electron Ion Collider, Miguel Arratia, Zhong-Bo Kang, Sebouh J. Paul, Alexei Prokudin, Felix Ringer, Fanyi Zhao

Physics Faculty Publications

We explore the potential of jet observables in charged-current deep inelastic scattering events at the future Electron-Ion Collider. Tagging jets with a recoiling neutrino, which can be identified by the event’s missing transverse momentum, will allow for flavor-sensitive measurements of transverse momentum dependent parton distribution functions. We present the first predictions for transverse-spin asymmetries in azimuthal neutrino-jet correlations and hadron-in-jet measurements. We study the kinematic reach and the precision of these measurements and explore their feasibility using parametrized detector simulations. We conclude that jet production in charged-current deep inelastic scattering, while challenging in terms of luminosity requirements, will complement the …


Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto Jan 2023

Crab Cavities For Ilc, P. A. Mcintosh, S. A. Belomestnykh, G. Burt, R. Calaga, S. U. De Silva, J. R. Delayen, I. V. Gonin, T. N. Khabiboulline, A. Lunin, T. Okugi, Y. M. Orlov, S. Verdú-Andrés, B. P. Xiao, V. P. Yakovlev, A. Yamamoto

Physics Faculty Publications

For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of …


A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al. Jan 2023

A Multidimensional Study Of The Structure Function Ratio Σlt'/ Σ₀ From Hard Exclusive ��⁺ Electro-Production Off Protons In The Gpd Regime, S. Diehl, A. Kim, K. Joo, P. Achenbach, Z. Akbar, M. J. Amaryan, H. Atac, H. Avagyan, C. Ayerbe Gayoso, L. Baashen, L. Barion, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, M. Bondi, W.A. Booth, M. Zurek, Et Al.

Physics Faculty Publications

A multidimensional extraction of the structure function ratio from the hard exclusive ep → e'n��+ reaction above the resonance region has been performed. The study was done based on beam-spin asymmetry measurements using a 10.6 GeV incident electron beam on a liquid-hydrogen target and the CLAS12 spectrometer at Jefferson Lab. The measurements focus on the very forward regime (t/Q2≪ 1) with a wide kinematic range of in the valence regime (0.17 < ��B < 0.55), and virtualities ranging from 1.5 GeV2 up to 6 GeV2. The results and their comparison to theoretical models based on Generalized Parton Distributions demonstrate the sensitivity to chiral-odd …


Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers Jan 2023

Resolution To The Problem Of Consistent Large Transverse Momentum In Tmds, J. O. Gonzalez-Hernandez, Tommaso Rainaldi, Ted Rogers

Physics Faculty Publications

Parametrizing TMD parton densities and fragmentation functions in ways that consistently match their large transverse-momentum behavior in standard collinear factorization has remained notoriously difficult. We show how the problem is solved in a recently introduced set of steps for combining perturbative and nonperturbative transverse momentum in TMD factorization. Called a “bottom-up” approach in a previous article, here we call it a “hadron structure oriented” (HSO) approach to emphasize its focus on preserving a connection to the TMD parton model interpretation. We show that the associated consistency constraints improve considerably the agreement between parametrizations of TMD functions and their large-kT behavior, …


Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati Jan 2023

Magnetic Field Mapping Of A Large-Grain 1.3 Ghz Single-Cell Cavity, Ishwari Prasad Parajuli, Jean R. Delayen, Alex V. Gurevich, Gianluigi Ciovati

Physics Faculty Publications

A new magnetic field mapping system for 1.3 GHz single-cell cavities was developed in order to reveal the impact of ambient magnetic field and temperature gradients during cool-down on the flux trapping phenomenon. Measurements were done at 2 K for different cool-down conditions of a large-grain cavity before and after 120 °C bake. The fraction of applied magnetic field trapped in the cavity walls was ~ 50% after slow cool-down and ~ 20% after fast cool-down. The results showed a weak correlation between between trapped flux locations and hot-spots causing the high-field Q-slope. The results also showed an increase of …


Constraints On The Onset Of Color Transparency From Quasielastic ¹²C(E, E′P) Up To Q² = (14.2 Gev /C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, C. Ayerbe Gayoso, M. L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, A. Asaturyan, K. Assumin-Gyimah, A. Bandari, S. Basnet, V. Berdnikov, J. Zhang, Et Al., Hall C. Collaboration Jan 2023

Constraints On The Onset Of Color Transparency From Quasielastic ¹²C(E, E′P) Up To Q² = (14.2 Gev /C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, C. Ayerbe Gayoso, M. L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, A. Asaturyan, K. Assumin-Gyimah, A. Bandari, S. Basnet, V. Berdnikov, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

Quasielastic scattering on 12C(e,e′p) was measured in Hall C at Jefferson Lab for spacelike four-momentum transfer squared Q2 in the range of 8–14.2(GeV/c)2 with proton momenta up to 8.3GeV/c. The experiment was carried out in the upgraded Hall C at Jefferson Lab. It used the existing high-momentum spectrometer and the new super-high-momentum spectrometer to detect the scattered electrons and protons in coincidence. The nuclear transparency was extracted as the ratio of the measured yield to the yield calculated in the plane wave impulse approximation. Additionally, the transparency of the 1s1/2 and 1p3/2 shell …


Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton Jan 2023

Status And Future Plans For C³ R&D, Emilio A. Nanni, Martin Breidenbach, Zenghai Li, Caterina Vernieri, Faya Wang, Glen White, Mei Bai, Sergey Belomestnykh, Pushpalatha Bhat, Tim Barklow, William J. Berg, Valery Borzenets, John Byrd, Ankur Dhar, Ram C. Dhuley, Chris Doss, Joseph Duris, Auralee Edelen, Claudio Emma, Joseph Frisch, Annika Gabriel, Spenser Gessner, Carsten Hast, Chunguang Jing, Arkadiy Klebaner, Dongsung Kim, Anatoly Krasnykh, John Lewellen, Matthias Liepe, Michael Litos, Xueying Lu, Jared Maxon, David Montanari, Pietro Musumeci, Sergei Nagaitsev, Alireza Nassiri, Cho-Kuen Ng, David A. K. Othman, Marco Oriunno, Dennis Palmer, J. Ritchie Patterson, Michael E. Peskin, Thomas J. Peterson, John Power, Ji Qiang, James Rosenzweig, Vladimir Shiltsev, Muhammad Shumail, Evgenya Simakov, Emma Snively, Bruno Spataro, Sami Tantawi, Harry Van Der Graaf, Brandon Weatherford, Juhao Wu, Kent P. Wootton

Physics Faculty Publications

C3 is an opportunity to realize an e+e- collider for the study of the Higgs boson at √s = 250 GeV, with a well defined upgrade path to 550 GeV while staying on the same short facility footprint [2,3]. C3 is based on a fundamentally new approach to normal conducting linear accelerators that achieves both high gradient and high efficiency at relatively low cost. Given the advanced state of linear collider designs, the key system that requires technical maturation for C3 is the main linac. This paper presents the staged approach towards a …


Concept Connectivity: An Educational And Research Framework For Scientific Learning In Optics, Photonics, And Electronic Education, Benjamin Dingel, John Gabriel C. Rivera, Francesca De Guzman Palabrica, Clint Dominic Bennett Jan 2023

Concept Connectivity: An Educational And Research Framework For Scientific Learning In Optics, Photonics, And Electronic Education, Benjamin Dingel, John Gabriel C. Rivera, Francesca De Guzman Palabrica, Clint Dominic Bennett

Physics Faculty Publications

We present a novel framework referred to as Concept Connectivity that aids in educating and engaging students by presenting the topic of the Special Theory of Relativity (STR) in a coherent and unified manner. It uses different analogue implementations of the STR coming from seemingly distinct fields of study such as (i) Optics, (ii) Photonics, and (iii) Electronics to connect not only to the concepts of the STR but to the various concepts from these different fields. In these analogue implementations, the fundamental characteristics of the different STR phenomena can be mimicked in many different ways. Concept Connectivity has two …


Measurement Of The Helicity Asymmetry E For The 𝛾p → P𝛑⁰ Reaction In The Resonance Region, C. W. Kim, N. Zachariou, M. Bashkanov, W. J. Briscoe, S. Fegan, V. L. Kashevarov, K. Nikonov, A. Sarantsev, A. Schmidt, I. I. Strakovsky, D. P. Watts, R. L. Workman, P. Achenbach, Z. Akbar, M. J. Amaryan, G. Angelini, W. R. Armstrong, H. Atac, L. Baashen, M. Zurek, Et Al., The Clas Collaboration Jan 2023

Measurement Of The Helicity Asymmetry E For The 𝛾p → P𝛑⁰ Reaction In The Resonance Region, C. W. Kim, N. Zachariou, M. Bashkanov, W. J. Briscoe, S. Fegan, V. L. Kashevarov, K. Nikonov, A. Sarantsev, A. Schmidt, I. I. Strakovsky, D. P. Watts, R. L. Workman, P. Achenbach, Z. Akbar, M. J. Amaryan, G. Angelini, W. R. Armstrong, H. Atac, L. Baashen, M. Zurek, Et Al., The Clas Collaboration

Physics Faculty Publications

The double-spin-polarization observable E for 𝛾 p → p𝛑⁰ has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies E𝛾 from 0.367 to 2.173 GeV (corresponding to center-of-mass energies from 1.240 to 2.200 GeV) for pion center-of-mass angles, cos θc.m.𝛑⁰, between - 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina …


Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich Jan 2023

Tuning Microwave Losses In Superconducting Resonators, Alex Gurevich

Physics Faculty Publications

Performance of superconducting resonators, particularly cavities for particle accelerators and micro cavities and thin film resonators for quantum computations and photon detectors has been improved substantially by recent materials treatments and technological advances. As a result, the niobium cavities have reached the quality factors Q ~ 1011 at 1-2 GHz and 1.5 K and the breakdown radio-frequency (rf) fields H close to the dc superheating eld of the Meissner state. These advances raise the question whether the state-of-the-art cavities are close to the fundamental limits, what these limits actually are, and to what extent the Q and H limits …


Microstructural Characterizations And Strength Development Of Self-Compacting Concrete Using Rice Husk Ash, Floyd Rey P. Plando, Joel T. Maquiling Jan 2023

Microstructural Characterizations And Strength Development Of Self-Compacting Concrete Using Rice Husk Ash, Floyd Rey P. Plando, Joel T. Maquiling

Physics Faculty Publications

The conversion of waste and by-products into green building materials is gaining attention for a sustainable economy. Particularly, rice husk ash (RHA) is used as a precursor in self-compacting concrete due to its high pozzolanic activity. It also minimizes the use of conventional OPC as a primary binder during construction by exploiting its chemical features and characteristics as an alternative binding agent. Developing and mass-producing RHA as a cementitious material would lessen the carbon footprint that harms the environment. This study presents the compressive strength and microstructural characterizations of rice husk ash-based self-compacting concrete (RHA-SCC). The scanning electron microscope was …


Smartphone-Based Approach To Demonstrating Relativistic Aberration Of Light Using Electronic Circuit Analogues For Undergraduates In The Philippines, Samuel Martirez, June Capin, Shayne Venancio, Perine Bianzon, John Gabriel Rivera, Benjamin Dingel, Clint Dominic Bennett Jan 2023

Smartphone-Based Approach To Demonstrating Relativistic Aberration Of Light Using Electronic Circuit Analogues For Undergraduates In The Philippines, Samuel Martirez, June Capin, Shayne Venancio, Perine Bianzon, John Gabriel Rivera, Benjamin Dingel, Clint Dominic Bennett

Physics Faculty Publications

Previously, we demonstrated an electronic circuit analogue of one of Special Relativity's (SR) phenomena called the Relativistic Aberration of Light (RAL) (European Journal of Physics, 42, 015605, 2021), which describes the change in the angle an observer sees a light source relative to their direction of motion at relativistic speeds. It used typical bulky laboratory equipment such as (i) function generators, (ii) oscilloscopes, and (iii) power supplies together with our all-pass filter (APF)-based electronic circuit analogue to perform experiments. In this paper, we present a novel smartphone-based experimental set-up performing the same experiment, but we replace the bulky and expensive …


The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok Jan 2023

The Post-Shock Nonequilibrium Relaxation In A Hypersonic Plasma Flow Involving Reflection Off A Thermal Discontinuity, Anna Markhotok

Physics Faculty Publications

The evolution in the post shock nonequilibrium relaxation in a hypersonic plasma flow was investigated during a shock’s reflection off a thermal discontinuity. Within a transitional period, the relaxation zone parameters past both, the reflected and transmitted waves, evolve differently compared to that in the incident wave. In a numerical example for the non-dissociating N2 gas heated to 5000 K/10,000 K across the interface and M = 3.5, the relaxation time for the transmitted wave is up to 50% shorter and the relaxation depth for both waves is significantly reduced, thus resulting in a weakened wave structure. The …


Exclusive 𝝅⁻ Electroproduction Off The Neutron In Deuterium In The Resonance Region, Y. Tian, R. W. Gothe, V. I. Mokeev, G. Hollis, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. Biselli, F. Bossù, S. Boiarinov, M. Bondì, J. Zhang, Et Al., The Clas Collaboration Jan 2023

Exclusive 𝝅⁻ Electroproduction Off The Neutron In Deuterium In The Resonance Region, Y. Tian, R. W. Gothe, V. I. Mokeev, G. Hollis, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, F. Benmokhtar, A. Bianconi, L. Biondo, A. Biselli, F. Bossù, S. Boiarinov, M. Bondì, J. Zhang, Et Al., The Clas Collaboration

Physics Faculty Publications

New results for the exclusive and quasifree cross sections off neutrons bound in deuterium 𝛾vn(p) → pπ− (p) are presented over a wide final state hadron angle range with a kinematic coverage of the invariant mass (W) up to 1.825 GeV and the four-momentum transfer squared (Q2) from 0.4 to 1.0 GeV2. The exclusive structure functions were extracted and their Legendre moments were obtained. Final-state-interaction contributions have been kinematically separated from the extracted quasifree cross sections off bound neutrons solely based on the analysis of the experimental data. These new results will serve as …


Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky Jan 2023

Rapidity-Only Tmd Factorization At One Loop, Ian Balitsky

Physics Faculty Publications

Typically, a production of a particle with a small transverse momentum in hadron-hadron collisions is described by CSS-based TMD factorization at moderate Bjorken xB ~ 1 and by kT-factorization at small xB. A uniform description valid for all xB is provided by rapidity-only TMD factorization developed in a series of recent papers at the tree level. In this paper the rapidity-only TMD factorization for particle production by gluon fusion is extended to the one-loop level.


Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers Jan 2023

Basics Of Factorization In A Scalar Yukawa Field Theory, F. Aslan, L. Gamberg, J.O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers

Physics Faculty Publications

The factorization theorems of QCD apply equally well to most simple quantum field theories that require renormalization but where direct calculations are much more straightforward. Working with these simpler theories is convenient for stress testing the limits of the factorization program and for examining general properties of the parton density functions or other correlation functions that might be necessary for a factorized description of a process. With this view in mind, we review the steps of factorization in a real scalar Yukawa field theory for both deep inelastic scattering and semi-inclusive deep inelastic scattering cross sections. In the case of …


First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et Al., Clas Collaboration Jan 2023

First Measurement Of Λ Electroproduction Off Nuclei In The Current And Target Fragmentation Regions, T. Chetry, L. El Fassi, W. K. Brooks, R. Dupré, A. El Alaoui, K. Hafidi, P. Achenbach, K. P. Adhikari, Z. Akbar, W.R. Armstrong, M. Arratia, H. Atac, H. Avakian, L. Baashen, N.A. Baltzell, M. Bashkanov, M. Battaglieri, I. Bedlinsky, B. Benkel, M. Zurek, Et Al., Clas Collaboration

Physics Faculty Publications

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions. The multiplicity ratio exhibits a strong suppression at high zand an enhancement at low z. The measured transverse momentum broadening is an order of magnitude greater than that seen for light mesons. This …