Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 672

Full-Text Articles in Physics

Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa Oct 2019

Analog Implementation Of The Hodgkin-Huxley Model Neuron, Zachary D. Mobille, George H. Rutherford, Jordan Brandt-Trainer, Rosangela Follmann, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft Oct 2019

Period Drift In A Neutrally Stable Stochastic Oscillator, Kevin Sanft

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Thermo-Mechanical Response Of Self-Assembled Nanoparticle Membranes, Yifan Wang, Henry Chan, Badri Narayanan, Sean P. Mcbride, Subramanian K.R.S. Sankaranarayanan, Xiao-Min Lin, Heinrich M. Jaeger Sep 2019

Thermo-Mechanical Response Of Self-Assembled Nanoparticle Membranes, Yifan Wang, Henry Chan, Badri Narayanan, Sean P. Mcbride, Subramanian K.R.S. Sankaranarayanan, Xiao-Min Lin, Heinrich M. Jaeger

Dr. Sean P. McBride

Ultrathin membranes composed of metallic or semiconducting nanoparticles capped with short ligand molecules are hybrid materials that have attracted considerable research interest.1-12 In contrast to two-dimensional (2D) membranes such as graphene and transition metal dichalcogenides monolayers, nanoparticle membranes can be engineered to achieve widely tunable mechanical, electronic or optical properties through different combinations of inorganic cores and organic ligands. In terms of mechanical properties, these membranes can form large area (tens of microns in diameter) freestanding structures with high Young’s moduli (~GPa) and fracture strength.1,13-15 Molecular dynamics (MD) simulations have indicated how this mechanical robustness can ...


Transmission And Guiding Of Fast Electrons Through Insulating Nanocapillaries And Comparison With Ion Guiding, Susanta Das Sep 2019

Transmission And Guiding Of Fast Electrons Through Insulating Nanocapillaries And Comparison With Ion Guiding, Susanta Das

Susanta Das

Transmission and guiding of fast electrons (500 and 1000 eV) through an insulating polyethylene terephthalate nanocapillary foil has been investigated and compared with results for slow highly charged ions. As for slow ions, guiding is attributed to charge-up of the inner walls near the capillary entrance, which, after a characteristic time, electrostatically deflects the traversing ions causing them to be guided through the sample along the capillary axis. The measurements were performed at WMU. Electron guiding is found to decrease faster with both energy and foil tilt angle than for ions. Ions lose negligible energy during the course of guiding ...


Monte Carlo Simulations Of Electrothermal Transport In Nanoelectronics, T. J. Spence Sep 2019

Monte Carlo Simulations Of Electrothermal Transport In Nanoelectronics, T. J. Spence

Science Seminars

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. The capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. In this talk, a Monte Carlo technique is presented for solving the classical Boltzmann Transport Equation, Poisson’s and Schrödinger’s equations for electrons and phonons.


Photochemistry On The Bottom Side Of The Mesospheric Na Layer, Tao Yuan, Wuhu Feng, John M. C. Plane, Daniel R. Marsh Sep 2019

Photochemistry On The Bottom Side Of The Mesospheric Na Layer, Tao Yuan, Wuhu Feng, John M. C. Plane, Daniel R. Marsh

Titus Yuan

Lidar observations of the mesospheric Na layer have revealed considerable diurnal variations, particularly on the bottom side of the layer, where more than an order-of-magnitude increase in Na density has been observed below 80 km after sunrise. In this paper, multi-year Na lidar observations are utilized over a full diurnal cycle at Utah State University (USU) (41.8o N, 111.8o W) and a global atmospheric model of Na with 0.5 km vertical resolution in the mesosphere and lower thermosphere (WACCM-Na) to explore the dramatic changes of Na density on the bottom side of the layer. Photolysis of the ...


Enhancing Cellular Uptake Of Magnetic Nanoparticles For Cancer Therapy Via Nanoparticle Engineering & Sonoporation, Ronald Kumon, Prem Vaishnava, Ronald Tackett, Lihua Wang, Cheryl Samaniego, Alexis Siegel, Sally Dagher Sep 2019

Enhancing Cellular Uptake Of Magnetic Nanoparticles For Cancer Therapy Via Nanoparticle Engineering & Sonoporation, Ronald Kumon, Prem Vaishnava, Ronald Tackett, Lihua Wang, Cheryl Samaniego, Alexis Siegel, Sally Dagher

Cheryl Samaniego

Magnetic induction heating of iron oxide nanoparticles has been proposed as a method for noninvasive cancer treatment without the side effects of chemotherapy and ionizing radiation. At Kettering University we propose to improve the uptake of nanoparticles by cells through the use of nanoparticle engineering and ultrasonic fields.


Uncompensated Polarization In Incommensurate Modulations Of Perovskite Antiferroelectrics, Tao Ma, Zhongming Fan, Bin Xu, Tae-Hoon Kim, Ping Lu, Laurent Bellaiche, Matthew J. Kramer, Xiaoli Tan, Lin Zhou Sep 2019

Uncompensated Polarization In Incommensurate Modulations Of Perovskite Antiferroelectrics, Tao Ma, Zhongming Fan, Bin Xu, Tae-Hoon Kim, Ping Lu, Laurent Bellaiche, Matthew J. Kramer, Xiaoli Tan, Lin Zhou

Xiaoli Tan

Complex polar structures of incommensurate modulations (ICMs) are revealed in chemically modified PbZrO3 perovskite antiferroelectrics using advanced transmission electron microscopy techniques. The Pb-cation displacements, previously assumed to arrange in a fully-compensated antiparallel fashion, are found to be either antiparallel but with different magnitudes, or in a nearly orthogonal arrangement in adjacent stripes in the ICMs. Ab initio calculations corroborate the low-energy state of these arrangements. Our discovery corrects the atomic understanding of ICMs in PbZrO3-based perovskite antiferroelectrics.


Obituary: Anthony Starace (1945-2019) Sep 2019

Obituary: Anthony Starace (1945-2019)

Anthony F. Starace Publications

Anthony Starace, George Holmes University Professor of physics, died Sept. 5 from complications related to pancreatitis. He was 74.

Starace was born July 24, 1945, in the Queens borough of New York City. He graduated from Stuyvesant High School and earned his bachelor’s degree from Columbia University in 1966 before moving west to the University of Chicago, where he earned his doctorate under adviser Ugo Fano in 1971. It was in Chicago that he met Katherine Fritz of Beatrice, Nebraska, his wife of 51 years.

Following a postdoctoral appointment at Imperial College London, Starace moved to Lincoln as an ...


Spatial And Orientational Control Of Liquid Crystal Alignment Using A Surface Localized Polymer Layer, Lu Lu, Tatiana Sergan, Vassili Sergan, Philip J. Bos Sep 2019

Spatial And Orientational Control Of Liquid Crystal Alignment Using A Surface Localized Polymer Layer, Lu Lu, Tatiana Sergan, Vassili Sergan, Philip J. Bos

Lu Lu

We present an alignment method for the surface contacting liquid crystal (LC) director. This method allows complete control of the polar pretilt angle as a function of position in a liquid crystal device, and has the potential of controlling the azimuthal orientation of LC. Important considerations of this method are to form a thin layer of reactive monomers at the LC cell interior surface, and to control the deleterious effects of flow due to polymerization induced concentration gradients. To achieve these, the voltage and frequency of the applied electric field and the UV intensity during the polymerization process are significant.


Mechanism Of Electric-Field-Induced Segregation Of Additives In A Liquid-Crystal Host, Lu Lu, Vassili Sergan, Philip J. Bos Sep 2019

Mechanism Of Electric-Field-Induced Segregation Of Additives In A Liquid-Crystal Host, Lu Lu, Vassili Sergan, Philip J. Bos

Lu Lu

The mechanism for electric-field-induced segregation of additives, containing a polar group, in a host liquid crystal is proposed. It is shown that the polarity of an applied dc electric field, or the frequency of an ac electric field, strongly influences the segregation of reactive monomers containing an ester group. An explanation of this result is offered based on the association of dissolved ions with polar groups of the reactive monomers. This association is considered to cause these types of additives to drift to the cell surface in the presence of an external electric field. The described mechanism can be applied ...


Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel Sep 2019

Mechanisms Of Methane Transport Through Populus Trichocarpa, Ellynne Marie Kutschera, M. A. K. Khalil, Andrew Rice, Todd Rosenstiel

Todd N. Rosenstiel

Although the dynamics of methane (CH4) emission from croplands and wetlands have been fairly well investigated, the contribution of trees to global CH4 emission and the mechanisms of tree transport are relatively unknown. CH4 emissions from the common wetland tree species Populus trichocarpa (black cottonwood) native to the Pacific Northwest were measured under hydroponic conditions in order to separate plant transport mechanisms from the influence of soil processes. Roots were exposed to CH4 enriched water and canopy emissions of CH4 were measured. The average flux for 34 trials (at temperatures ranging from 17 to 25 °C) was 2.8 ± 2 ...


Physics And Mathematics Of Graded Quivers, Azeem Hasan Sep 2019

Physics And Mathematics Of Graded Quivers, Azeem Hasan

All Dissertations, Theses, and Capstone Projects

A graded quiver with superpotential is a quiver whose arrows are assigned degrees c ∈ {0, 1, · · · , m}, for some integer m ≥ 0, with relations generated by a superpotential of degree m − 1. For m = 0, 1, 2, 3 they often describe the open string sector of D-brane systems; in particular, they capture the physics of D(5 − 2m)-branes at local Calabi-Yau (CY) (m + 2)- fold singularities in type IIB string theory. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m + 2)-folds are toric. A key result is ...


Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields Sep 2019

Sequential Discrimination Between Non-Orthogonal Quantum States, Dov L. Fields

All Dissertations, Theses, and Capstone Projects

The problem of discriminating between non-orthogonal states is one that has generated a lot of interest. This basic formalism is useful in many areas of quantum information. It serves as a fundamental basis for many quantum key distribution schemes, it functions as an integral part of other quantum algorithms, and it is useful in experimental settings where orthogonal states are not always possible to generate. Additionally, the discrimination problem reveals important fundamental properties, and is intrinsically related to entanglement. In this thesis, the focus is on exploring the problem of sequentially discriminating between non-orthogonal states. In the simplest version these ...


On Different Parametrizations Of Feynman Integrals, Ray Daniel Sameshima Sep 2019

On Different Parametrizations Of Feynman Integrals, Ray Daniel Sameshima

All Dissertations, Theses, and Capstone Projects

In this doctoral thesis, we discuss and apply advanced techniques for the calculations of scattering amplitudes which, on the one hand, allow us to compute cross sections and differential distributions at high precision and, on the other hand, give us deep mathematical insights on the mathematical structures of Feynman integrals.

We start by presenting phenomenological calculations relevant for the experimental analyses at the Large Hadron Collider. We use the resummation of soft gluon emission corrections to study the associated production of a top pair and a Z boson to next-to-next-to-leading logarithmic accuracy, and compute the total cross section and differential ...


Optical And Collective Properties Of Excitons In 2d Semiconductors, Matthew N. Brunetti Sep 2019

Optical And Collective Properties Of Excitons In 2d Semiconductors, Matthew N. Brunetti

All Dissertations, Theses, and Capstone Projects

We study the properties of excitons in 2D semiconductors (2DSC) by numerically solving the Schr\"{o}dinger equation for an interacting electron and hole in the effective mass approximation, then calculating optical properties such as the transition energies, oscillator strengths, and absorption coefficients. Our theoretical approach allows us to consider both direct excitons in monolayer (ML) 2DSC and spatially indirect excitons in heterostructures (HS) consisting of two 2DSC MLs separated by few-layer insulating hexagonal boron nitride (h-BN). In particular, we study indirect excitons in TMDC HS, namely MoS2, MoSe2, WS2, and WSe2; both direct and ...


Coulomb Excitation And Transport Properties Of Monolayer Graphene And The Alpha-T3 Lattice, Dipendra Dahal Sep 2019

Coulomb Excitation And Transport Properties Of Monolayer Graphene And The Alpha-T3 Lattice, Dipendra Dahal

All Dissertations, Theses, and Capstone Projects

In the past few years, I focused my attention in the study of 2D material's behavior, specifically graphene . We investigated several properties of graphene like transmission of particle through a potential barrier and demonstrated the effect of band gap to suppress the Klein tunneling at head on collision, we presented the results to get the criteria of negative refractive index and Klein tunneling through multiple barrier. Next, we have carried out the calculation of polarization function of graphene in the presence of magnetic field. The effect of integer Landau filling factor is shown and the portrayed results are presented ...


Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li Sep 2019

Inference Of Language Functional Network In Healthy, Cancerous And Bilingual Brains By Fmri And Network Modeling, Qiongge Li

All Dissertations, Theses, and Capstone Projects

We study the underlying mechanism by which language processing occurs in the human brain using inference methods on functional magnetic resonance imaging data. The data analyzed stems from several cohorts of subjects; a monolingual group, a bilingual group, a healthy control group and one diseased case. We applied a complex statistical inference pipeline to determine the network structure of brain components involved with language. This healthy network reveals a fully connected triangular relationship between the pre-Supplementary Motor Area (pre-SMA), the Broca's Area (BA), and the ventral Pre-Motor Area (PreMA) in the left hemisphere. This "triangle'' shows consistently in all ...


Waccmxdata, Xuguang Cai Aug 2019

Waccmxdata, Xuguang Cai

Xuguang Cai

This is the waccmx-dart data that I used for my chile paper. It is the Temperature, zonal, meridional and vertical winds, altitude from 90 to 452 km, altitude resolution 2 km and temporal resolution 1-hour. The data is April 23, 2015


Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens Aug 2019

Studying Near-Critical And Super-Critical Fluids In Reduced Gravity, Christian Hawkins, Ana Oprisan, Carole Lecoutre-Chabot, Yves Garrabos, Daniel Beysens

Journal of the South Carolina Academy of Science

Critical and supercritical fluids have a variety of applications, from use as machine lubricants in high pressure or high temperature environments to the manufacturing of materials such as aerogel. The optical properties of fluids undergo rapid changes near the critical point resulting in a rapid increase in turbidity known as critical opalescence. These optical changes can be used to probe the universality of critical behavior. As a fluid approaches the critical point, the compressibility rapidly increases. In a gravitational field, this increase in compressibility leads to near-critical fluids stratifying by phase and density, making it difficult to observe the optical ...


Table Of Contents Aug 2019

Table Of Contents

Journal of the South Carolina Academy of Science

No abstract provided.


Ucna/Ucna+, Robert Pattie Aug 2019

Ucna/Ucna+, Robert Pattie

Robert W. Pattie Jr.

The neutron provides a simple yet dynamic nuclear system to study the Standard Model of Particle Physics. The process of transforming a neutron into a proton, an electron, and an anti-neutrino contains a wealth of information in the decay rate and the kinematics of the emitted particles. Precision measurements of angular correlations in neutron β-decay can lend insight to the structure of the weak interaction and probe for physics beyond the Standard Model. The UCNA experiment at the Los Alamos Neutron Science Center is the only experiment to use ultracold neutrons to perform such a measurement, determining the β-asymmetry parameter ...


Correlations Between Short- And Long-Time Relaxation In Colloidal Supercooled Liquids And Glasses, Chandan K. Mishra, Xiaoguang Ma, Piotr Habdas, Kevin B. Aptowicz, A. G. Yodh Aug 2019

Correlations Between Short- And Long-Time Relaxation In Colloidal Supercooled Liquids And Glasses, Chandan K. Mishra, Xiaoguang Ma, Piotr Habdas, Kevin B. Aptowicz, A. G. Yodh

Physics

Spatiotemporal dynamics of short- and long-time structural relaxation are measured experimentally as a function of packing fraction, φ, in quasi-two-dimensional colloidal supercooled liquids and glasses. The relaxation times associated with long-time dynamic heterogeneity and short-time intracage motion are found to be strongly correlated and to grow by orders of magnitude with increasing φ toward dynamic arrest. We find that clusters of fast particles on the two timescales often overlap, and, interestingly, the distribution of minimum-spatial-separation between closest nonoverlapping clusters across the two timescales is revealed to be exponential with a decay length that increases with φ. In total, the experimental ...


Fatigue-Resistant High-Performance Elastocaloric Materials Via Additive Manufacturing, Huilong Hou, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cissé, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, Ichiro Takeuchi Aug 2019

Fatigue-Resistant High-Performance Elastocaloric Materials Via Additive Manufacturing, Huilong Hou, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cissé, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, Ichiro Takeuchi

Valery I. Levitas

Elastocaloric cooling, which exploits the latent heat released and absorbed as stress-induced phase transformations are reversibly cycled in shape memory alloys, has recently emerged as a frontrunner in non-vapor-compression cooling technologies. The intrinsically high thermodynamic efficiency of elastocaloric materials is limited only by work hysteresis. Here, we report on creating high-performance low-hysteresis elastocaloric cooling materials via additive manufacturing of Titanium-Nickel (Ti-Ni) alloys. Contrary to established knowledge of the physical metallurgy of Ti-Ni alloys, intermetallic phases are found to be beneficial to elastocaloric performances when they are combined with the binary Ti-Ni compound in nanocomposite configurations. The resulting microstructure gives rise ...


The Effect Of Spatial Averaging On Db/Dt Exposure Values For Implanted Medical Devices, Christopher Ap Brown Aug 2019

The Effect Of Spatial Averaging On Db/Dt Exposure Values For Implanted Medical Devices, Christopher Ap Brown

Electronic Thesis and Dissertation Repository

Magnetic resonance imaging (MRI) is a medical imaging modality that has seen continuous growth in the decades since its introduction. In conjunction with this increase in the use of MRI, there has also been a growth in the number of patients having implanted medical devices, such as pacemakers. These devices can have undesirable interactions with the MR system. The safety of these interactions must be guaranteed while ensuring that safety limits are not so conservative that they would preclude too many patients from benefiting from MRI. One factor that could make limits less restrictive is spatial averaging of the fields ...


Self-Consistent Two-Gap Description Of Mgb2 Superconductor, Hyunsoo Kim, Kyuil Cho, Makariy A. Tanatar, Valentin Taufour, Stella K. Kim, Sergey L. Bud’Ko, Paul C. Canfield, Vladimir G. Kogan, Ruslan Prozorov Aug 2019

Self-Consistent Two-Gap Description Of Mgb2 Superconductor, Hyunsoo Kim, Kyuil Cho, Makariy A. Tanatar, Valentin Taufour, Stella K. Kim, Sergey L. Bud’Ko, Paul C. Canfield, Vladimir G. Kogan, Ruslan Prozorov

Paul C. Canfield

A self-consistent two-gap γ -model is used to quantitatively describe several thermodynamic properties of MgB 2 superconductor. The superconducting coupling matrix, νij , was obtained from the fitting of the superfluid density in the entire superconducting temperature range. Using this input, temperature-dependent superconducting gaps, specific heat, and upper critical fields were calculated with no adjustable parameters and compared with the experimental data as well as with the first-principles calculations. The observed agreement between fit and data shows that γ -model provides adequate quantitative description of the two-gap superconductivity in MgB 2 and may serve as a relatively simple and versatile self-consistent ...


Composition-Dependent Stability Of The Medium-Range Order Responsible For Metallic Glass Formation, Feng Zhang, Min Ji, Xiao-Wei Fang, Yang Sun, Cai-Zhuang Wang, Mikhail I. Mendelev, Matthew J. Kramer, Ralph E. Napolitano, Kai-Ming Ho Aug 2019

Composition-Dependent Stability Of The Medium-Range Order Responsible For Metallic Glass Formation, Feng Zhang, Min Ji, Xiao-Wei Fang, Yang Sun, Cai-Zhuang Wang, Mikhail I. Mendelev, Matthew J. Kramer, Ralph E. Napolitano, Kai-Ming Ho

Ralph E. Napolitano

The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. We focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. Our results show that a Bergman-type motif ...


A Computational Study Of Diffusion In A Glass-Forming Metallic Liquid, T. Wang, F. Zhang, L. Yang, X. W. Fang, S. H. Zhou, Matthew J. Kramer, Cai-Zhuang Wang, Kai-Ming Ho, Ralph E. Napolitano Aug 2019

A Computational Study Of Diffusion In A Glass-Forming Metallic Liquid, T. Wang, F. Zhang, L. Yang, X. W. Fang, S. H. Zhou, Matthew J. Kramer, Cai-Zhuang Wang, Kai-Ming Ho, Ralph E. Napolitano

Ralph E. Napolitano

Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general ...


Fatigue-Resistant High-Performance Elastocaloric Materials Via Additive Manufacturing, Huilong Hou, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cissé, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, Ichiro Takeuchi Aug 2019

Fatigue-Resistant High-Performance Elastocaloric Materials Via Additive Manufacturing, Huilong Hou, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cissé, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, Ichiro Takeuchi

Aerospace Engineering Publications

Elastocaloric cooling, which exploits the latent heat released and absorbed as stress-induced phase transformations are reversibly cycled in shape memory alloys, has recently emerged as a frontrunner in non-vapor-compression cooling technologies. The intrinsically high thermodynamic efficiency of elastocaloric materials is limited only by work hysteresis. Here, we report on creating high-performance low-hysteresis elastocaloric cooling materials via additive manufacturing of Titanium-Nickel (Ti-Ni) alloys. Contrary to established knowledge of the physical metallurgy of Ti-Ni alloys, intermetallic phases are found to be beneficial to elastocaloric performances when they are combined with the binary Ti-Ni compound in nanocomposite configurations. The resulting microstructure gives rise ...


On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck Aug 2019

On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck

Peter Moeck

The existing types of classification approaches for the crystallographic symmetries of patterns that are more or less periodic in two dimensions (2D) are reviewed. Their relative performance is evaluated in a qualitative manner. Pseudo-symmetries of different kinds are discussed as they present severe challenges to most classification approaches when noise levels are moderate to high. The author’s information theory based approaches utilize digital images and geometric Akaike Information Criteria. They perform well in the presence of pseudo-symmetries and turn out to be the only ones that allow for fully objective (completely researcher independent) and generalized noise level dependent classifications ...