Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2009

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 1062

Full-Text Articles in Physics

Partial Wave Analysis Of The Reaction Γp And The Search For Nucleon Resonances, M. Williams, Gerard P. Gilfoyle, Et. Al. Dec 2009

Partial Wave Analysis Of The Reaction Γp→Pω And The Search For Nucleon Resonances, M. Williams, Gerard P. Gilfoyle, Et. Al.

Physics Faculty Publications

An event-based partial wave analysis (PWA) of the reaction γp has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world’s first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of ωπ +π π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F15(1680) and D13(1700 ...


Equalization Of Loudspeakers And Enclosed Sound Fields, Xi Chen Dec 2009

Equalization Of Loudspeakers And Enclosed Sound Fields, Xi Chen

Theses and Dissertations

Equalization of loudspeakers and enclosed sound fields has been a topic of considerable interest for decades. Confusion has often arisen among audio professionals regarding the feasibility of simultaneously equalizing a loudspeaker and the enclosed field (i.e., the “room”) it excites. Because of frustrations encountered in such efforts, some have advocated abandoning simultaneous equalization altogether. This dissertation discusses the drawbacks of this approach as well as traditional in situ equalization methods. It demonstrates that many problems with traditional equalization stem from the use of measured acoustic pressure at a discrete point in a sound field as the system output. The ...


Differential Cross Sections And Spin Density Matrix Elements For The Reaction Γp, M. Williams, Gerard P. Gilfoyle, Et. Al. Dec 2009

Differential Cross Sections And Spin Density Matrix Elements For The Reaction Γp→Pω, M. Williams, Gerard P. Gilfoyle, Et. Al.

Physics Faculty Publications

High-statistics differential cross sections and spin-density matrix elements for the reaction γp have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass (c.m.) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide c.m. energy bins, each subdivided into cos θωc.m. bins of width 0.1. These are the most precise and extensive ω photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.


A High-Yield Synthesis Of Chalcopyrite Cuins2 Nanoparticles With Exceptional Size Control, Aaron Thurber, Alex Punnoose Dec 2009

A High-Yield Synthesis Of Chalcopyrite Cuins2 Nanoparticles With Exceptional Size Control, Aaron Thurber, Alex Punnoose

Physics Faculty Publications and Presentations

We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100◦C and times as short as 30 minutes. The nanoparticles sizes were 1.8nm to 10.8 nm as reaction temperatures were varied from 100◦C to 200◦C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies ...


Optical Control Of Thermocapillary Effects In Complex Nanofluids, Yuval Lamhot, Assaf Barak, Carmel Rotschild, Mordechai Segev, Meirav Saraf, Efrat Lifshitz, Abraham Marmur, Ramy El-Ganainy, Demetrios N. Christodoulides Dec 2009

Optical Control Of Thermocapillary Effects In Complex Nanofluids, Yuval Lamhot, Assaf Barak, Carmel Rotschild, Mordechai Segev, Meirav Saraf, Efrat Lifshitz, Abraham Marmur, Ramy El-Ganainy, Demetrios N. Christodoulides

Ramy El-Ganainy

We study the strong coupling of light and nanoparticle suspensions and their surface tension effect in capillaries. We show experimentally and theoretically that increasing the intensity of a narrow laser beam passing through a capillary far away from the surface results in a significant decrease in the fluid level. The underlying mechanism relies on light-induced redistribution of nanoparticles in the bulk and the surface of the fluid, facilitating continuous optical control over the surface position. The experiments manifest optical control from afar over properties of fluid surfaces.


Casimir Interactions Between Scatterers In Carbon Nanotubes, Dina Zhabinskaya Dec 2009

Casimir Interactions Between Scatterers In Carbon Nanotubes, Dina Zhabinskaya

Publicly Accessible Penn Dissertations

In this thesis we calculate interactions between localized scatterers in metallic carbon nanotubes. Backscattering of electrons between localized scatterers mediates long range forces between them. These interactions are mapped to Casimir forces mediated by one-dimensional massless fermions and calculated using a force operator approach. We first study interactions between scatterers described by spinor polarized potentials relevant to the single-valley problem in carbon nanotubes. We obtain the force between two finite width square barriers, and take the limit of zero width and infinite potential strength to study the Casimir force mediated by the fermions. For the case of identical scatterers we ...


Structural Studies Of Large Integral Membrane Proteins In Reverse Micelles By Solution Nuclear Magnetic Resonance, Joseph Kielec Dec 2009

Structural Studies Of Large Integral Membrane Proteins In Reverse Micelles By Solution Nuclear Magnetic Resonance, Joseph Kielec

Publicly Accessible Penn Dissertations

The structural characterization of integral membrane proteins represents one of the many challenges of the post-genomic era. While membrane proteins comprise approximately 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers tremendous potential for the investigation of membrane proteins in aqueous environments with respect to structural characterization, relaxation properties, and the details of small ligand interactions. However, the size limitations of solution NMR due to the slow tumbling problem have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small β-barrel proteins or helical ...


Galaxy-Cmb And Galaxy-Galaxy Lensing On Large Scales: Sensitivity To Primordial Non-Gaussianity, Donghui Jeong, Eiichiro Komatsu, Bhuvnesh Jain Dec 2009

Galaxy-Cmb And Galaxy-Galaxy Lensing On Large Scales: Sensitivity To Primordial Non-Gaussianity, Donghui Jeong, Eiichiro Komatsu, Bhuvnesh Jain

Department of Physics Papers

A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose amplitude is given by the ƒNL parameter, offers a powerful test of inflation. In this paper, we calculate the modification of two-point cross-correlation statistics of weak lensing—galaxy-galaxy lensing and galaxycosmic microwave background (CMB) crosscorrelation—due to ƒNL. We derive and calculate the covariance matrix of galaxy-galaxy lensing, including cosmic variance terms. We focus on large scales (l < 100) for which the shape noise of the shear measurement becomes irrelevant and cosmic variance dominates the error budget. For a modest degree of non-Gaussianity, ƒNL = ±50 modifications of the galaxy-galaxy-lensing signal at the 10% level are seen on scales R ~ 300 Mpc, and grow rapidly toward larger scales as ∝ R ...


Helical Nanofilaments And The High Chiralty Limit Of Smectics A, Elisabetta A. Matsumoto, Gareth P. Alexander, Randal D. Kamien Dec 2009

Helical Nanofilaments And The High Chiralty Limit Of Smectics A, Elisabetta A. Matsumoto, Gareth P. Alexander, Randal D. Kamien

Department of Physics Papers

Liquid crystalline systems exhibiting both macroscopic chirality and smectic order experience frustration resulting in mesophases possessing complex three-dimensional order. In the twist-grainboundary phase, defect lattices mediate the propagation of twist throughout the system. We propose a new chiral smectic structure composed of a lattice of chiral bundles as a model of the helical nanofilament (B4) phase of bent-core smectics.


Carbon Coated Tellurium For Optical Data Storage, Jonathan D. Abbott Dec 2009

Carbon Coated Tellurium For Optical Data Storage, Jonathan D. Abbott

Theses and Dissertations

A highly durable optical disk has been developed for data archiving. This optical disk uses tellurium as the write layer and carbon as a dielectric and oxidation prevention layer. The sandwich style CTeC film was deposited on polycarbonate and silicon substrates by plasma sputtering. These films were then characterized with SEM, TEM, EELS, ellipsometry, ToF-SIMS, etc, and were tested for writability and longevity. Results show the films were uniform in physical structure, are stable, and able to form permanent pits. Data was written to a disk and successfully read back in a commercial DVD drive.


Reevaluating The Cosmological Origin Of Dark Matter, Scott Watson Dec 2009

Reevaluating The Cosmological Origin Of Dark Matter, Scott Watson

Physics

The origin of dark matter as a thermal relic offers a compelling way in which the early universe was initially populated by dark matter. Alternative explanations typically appear exotic compared to the simplicity of thermal production. However, recent observations and progress from theory suggest that it may be necessary to be more critical. This is important because ongoing searches probing the microscopic properties of dark matter typically rely on the assumption of dark matter as a single, unique, thermal relic. On general grounds I will argue that non-thermal production of dark matter seems to be a robust prediction of physics ...


Measured Optical Constants Of Copper From 10 Nm To 35 Nm, David D. Allred, Nicole Brimhall, Nicholas Herrick, Justin Peatross, R. Steven Turley, Michael Ware Dec 2009

Measured Optical Constants Of Copper From 10 Nm To 35 Nm, David D. Allred, Nicole Brimhall, Nicholas Herrick, Justin Peatross, R. Steven Turley, Michael Ware

Faculty Publications

We use laser high-order harmonics and a polarization-ratioreflectance technique to determine the optical constants of copper and oxidized copper in the wavelength range 10-35 nm. This measurement resolves previously conflicting data sets, where disagreement on optical constants of copper in the extreme ultraviolet most likely arises from inadvertent oxidation of samples before measurement.


Non-Gaussian Signatures From The Postinflationary Early Universe, Alessandra Silvestri, Mark Trodden Dec 2009

Non-Gaussian Signatures From The Postinflationary Early Universe, Alessandra Silvestri, Mark Trodden

Department of Physics Papers

We consider contributions to non-Gaussianity of the cosmic microwave background (CMB) from remnants of phase transitions in the very early Universe. Such signatures can optimistically be used to discover evidence of new particle physics through cosmological observations. More conservatively they may provide an obstacle to extracting information about the non-Gaussian nature of primordial density fluctuations from any detection in the CMB. We study this explicitly by computing the bispectrum from global textures, which occur in a wide class of particle physics models.


Fractal Location And Anomalous Diffusion Dynamics For Oil Wells From The Ky Geological Survey, Keith Andrew, Karla M. Andrew, Kevin A. Andrew Dec 2009

Fractal Location And Anomalous Diffusion Dynamics For Oil Wells From The Ky Geological Survey, Keith Andrew, Karla M. Andrew, Kevin A. Andrew

Physics & Astronomy Faculty Publications

Utilizing data available from the Kentucky Geonet (KYGeonet.ky.gov) the fossil fuel mining locations created by the Kentucky Geological Survey geo-locating oil and gas wells are mapped using ESRI ArcGIS in Kentucky single plain 1602 ft projection. This data was then exported into a spreadsheet showing latitude and longitude for each point to be used for modeling at different scales to determine the fractal dimension of the set. Following the porosity and diffusivity studies of Tarafdar and Roy[1] we extract fractal dimensions of the fossil fuel mining locations and search for evidence of scaling laws for the set ...


Can Cosmic Parallax Distinguish Between Anisotrophic Cosmologies?, Michele Fontanini, Eric J. West, Mark Trodden Dec 2009

Can Cosmic Parallax Distinguish Between Anisotrophic Cosmologies?, Michele Fontanini, Eric J. West, Mark Trodden

Department of Physics Papers

In an anisotropic universe, observers not positioned at a point of special symmetry should observe cosmic parallax—the relative angular motion of test galaxies over cosmic time. It was recently argued that the nonobservance of this effect in upcoming precision astrometry missions such as GAIA may be used to place strong bounds on the position of off-center observers in a void-model universe described by the Lemaitre-Tolman-Bondi metric. We consider the analogous effect in anisotropic cosmological models described by an axisymmetric homogeneous Bianchi type I metric and discuss whether any observation of cosmic parallax would distinguish between different anisotropic evolutions.


Equivalence Of Glass Transition And Colloidal Glass Transition In The Hard-Sphere Limit, Ning Xu, Thomas K. Haxton, Andrea J. Liu, Sidney R. Nagel Dec 2009

Equivalence Of Glass Transition And Colloidal Glass Transition In The Hard-Sphere Limit, Ning Xu, Thomas K. Haxton, Andrea J. Liu, Sidney R. Nagel

Department of Physics Papers

We show that the slowing of the dynamics in simulations of several model glass-forming liquids is equivalent to the hard-sphere glass transition in the low-pressure limit. In this limit, we find universal behavior of the relaxation time by collapsing molecular-dynamics data for all systems studied onto a single curve as a function of T/p, the ratio of the temperature to the pressure. At higher pressures, there are deviations from this universal behavior that depend on the interparticle potential, implying that additional physical processes must enter into the dynamics of glass formation.


Analysis Of Expedient Field Decontamination Methods For The Xmx/2l-Mil High-Volume Aerosol Sampler, Brandon C. Laroche Dec 2009

Analysis Of Expedient Field Decontamination Methods For The Xmx/2l-Mil High-Volume Aerosol Sampler, Brandon C. Laroche

Theses and Dissertations

The XMX/2L-MIL is a high volume air sampler used by the Air Force Bioenvironmental Engineering community to collect biological aerosols. Without a verified decontamination technique, however, the XMX cannot be used effectively. The objective of this study was to evaluate several proposed methods for expedient field decontamination of the XMX. This study centered on the inactivation of Bacillus atrophaeus spores and vegetative Erwinia herbicola organisms from the XMX inner canister. The goals in this investigation were twofold: 1) to verify the antimicrobial efficacy of a 10% bleach solution and 2) to determine if wiping the components with a bleach-soaked ...


Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley Dec 2009

Midwave Infrared Imaging Fourier Transform Spectrometry Of Combustion Plumes, Kenneth C. Bradley

Theses and Dissertations

A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a flow rate of 300 cm3/min was collected at 1 cm−1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of water, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A ...


Viscosity Dependent Liquid Slip At Molecularly Smooth Hydrophobic Surfaces, Sean P. Mcbride, Bruce M. Law Dec 2009

Viscosity Dependent Liquid Slip At Molecularly Smooth Hydrophobic Surfaces, Sean P. Mcbride, Bruce M. Law

Physics Faculty Research

Colloidal probe atomic force microscopy is used to study the slip behavior of 18 Newtonian liquids from two homologous series, the n-alkanes and n-alcohols, at molecularly smooth hydrophobic n-hexadecyltrichlorosilane coated surfaces. We find that the slip behavior is governed by the bulk viscosity η of the liquid, specifically, the slip length b∼ηx with x∼0.33. Additionally, the slip length was found to be shear rate independent, validating the use of Vinogradova slip theory in this work.


Are Black Holes Really Two Dimensional?, Vijay Balasubramanian Dec 2009

Are Black Holes Really Two Dimensional?, Vijay Balasubramanian

Department of Physics Papers

No abstract provided.


Flux Growth At Ambient Pressure Of Millimeter-Sized Single Crystals Of Lafeaso, Lafeaso1−Xfx, And Lafe1−Xcoxaso, J.-Q. Yan, Shibabrata Nandi, Jerel L. Zarestky, W. Tian, Andreas Kreyssig, Brandt A. Jensen, A. Kracher, Kevin W. Dennis, Robert J. Mcqueeney, Alan I. Goldman, R. William Mccallum, Thomas A. Lograsso Dec 2009

Flux Growth At Ambient Pressure Of Millimeter-Sized Single Crystals Of Lafeaso, Lafeaso1−Xfx, And Lafe1−Xcoxaso, J.-Q. Yan, Shibabrata Nandi, Jerel L. Zarestky, W. Tian, Andreas Kreyssig, Brandt A. Jensen, A. Kracher, Kevin W. Dennis, Robert J. Mcqueeney, Alan I. Goldman, R. William Mccallum, Thomas A. Lograsso

Ames Laboratory Publications

Millimeter-sized single crystals of LaFeAsO, LaFeAsO1−xFx, and LaFe1−xCoxAsO were grown in NaAs flux at ambient pressure. The detailed growth procedure and crystal characterizations are reported. The as-grown crystals have typical dimensions of3×4×0.05–0.3 mm3 with the crystallographic c-axis perpendicular to the plane of the platelike single crystals. Various characterizations confirmed the high quality of our LaFeAsO crystals. Co and F were introduced into the lattice leading to superconductingLaFe1−xCoxAsO and LaFeAsO1−xFx single crystals, respectively. This growth protocol ...


Nanoscopic Investigation Of Surface Morphology Of Neural Growth Cones And Indium Containing Group-Iii Nitrides, Göksel Durkaya Dec 2009

Nanoscopic Investigation Of Surface Morphology Of Neural Growth Cones And Indium Containing Group-Iii Nitrides, Göksel Durkaya

Physics and Astronomy Dissertations

This research focuses on the nanoscopic investigation of the three-dimensional surface morphology of the neural growth cones from the snail Helisoma trivolvis, and InN and InGaN semiconductor material systems using Atomic Force Microscopy (AFM). In the analysis of the growth cones, the results obtained from AFM experiments have been used to construct a 3D architecture model for filopodia. The filopodia from B5 and B19 neurons have exhibited different tapering mechanisms. The volumetric analysis has been used to estimate free Ca2+ concentration in the filopodium. The Phase Contrast Microscopy (PCM) images of the growth cones have been corrected to thickness provided ...


Analysis Of Gan/Alxga1−Xn Heterojunction Dual-Band Photodetectors Using Capacitance Profiling Techniques, Laura E. Byrum Dec 2009

Analysis Of Gan/Alxga1−Xn Heterojunction Dual-Band Photodetectors Using Capacitance Profiling Techniques, Laura E. Byrum

Physics and Astronomy Theses

Capacitance-voltage-frequency measurements on n+-GaN/AlxGa1−xN UV/IR dual-band detectors are reported. The presence of shallow Si-donor, deep Si-donor, and C-donor/N-vacancy defect states were found to significantly alter the electrical characteristics of the detectors. The barrier Al fraction was found to change the position of the interface defect states relative to the Fermi level. The sample with Al fraction of 0.1 shows a distinct capacitance-step and hysteresis, which is attributed to C-donor/N-vacancy electron trap states located above the Fermi level (200 meV) at the heterointerface; whereas, the sample with Al fraction of 0.026 shows negative ...


Partially Coherent Standard And Elegant Laguerre-Gaussian Beams Of All Orders, Fei Wang, Yangjian Cai, Olga Korotkova Dec 2009

Partially Coherent Standard And Elegant Laguerre-Gaussian Beams Of All Orders, Fei Wang, Yangjian Cai, Olga Korotkova

Physics Articles and Papers

Partially coherent standard and elegant Laguerre-Gaussian (LG) beams of all orders are introduced as a natural extension of coherent standard and elegant LG beams to the stochastic domain. By expanding the LG modes into a finite sum of Hermite-Gaussian modes, the analytical formulae are obtained for the cross-spectral densities of partially coherent standard and elegant LG beams in the source plane and after passing through paraxial ABCD optical system, based on the generalized Collins integral formula. A comparative study of the propagation properties of the partially coherent standard and elegant LG beams in free space is carried out via a ...


Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme Dec 2009

Modeling Of Metal-Ferroelectric-Insulator-Semiconductor Structures Based On Langmuir–Blodgett Copolymer Films, Timothy J. Reece, Stephen Ducharme

Stephen Ducharme Publications

Among the ferroelectric thin films used in field-effect transistor devices; the ferroelectric copolymer of polyvinylidene fluoride PVDF –CH2–CF2–, with trifluoroethylene TrFE –CHF–CF2–, has distinct advantages, including low dielectric constant, low processing temperature, low cost, and compatibility with organic semiconductors. The operation of a metal-ferroelectric insulatorsemiconductor structure with PVDF-TrFE as the ferroelectric layer was analyzed and optimized by numerical solution of the Miller and McWhorter model. A model device consisting of 20 nm PVDF/TrFE on a 10-nm-thick high-k dielectric buffer exhibits a memory window of 5 V with an operating voltage of 15 V. The operating voltage can ...


Wide-Range Characterization Of Current Conduction In Superconductors-Tuning Their Properties By Nanoscale Modification Of Materials, Özgür Polat Dec 2009

Wide-Range Characterization Of Current Conduction In Superconductors-Tuning Their Properties By Nanoscale Modification Of Materials, Özgür Polat

Doctoral Dissertations

Significant progress has been made in the development of YBa2Cu3O7-x (YBCO)-based coated conductors (CCs) since the discovery of YBCO in 1987. Nowadays, high temperature superconductor (HTS) materials are advancing toward wide application areas in medical physics, industry, and science. The successful applications of these materials require clear understanding of the mechanisms controlling the current carrying capacity. It has been demonstrated the maximum current that a HTS can support is strongly affected by the vortex dynamics within the HTS materials. In this dissertation, we employed a combination of methods: conventional transport, magnetometry in a swept ...


A 236-Ghz Fe3+ Epr Study Of Nanoparticles Of The Ferromagnetic Room-Temperature Semiconductor Sn1-XFeXO2 (X = 0.005), Sushil K. Misra, S. I. Andronenko, Alex Punnoose, Dmitry Tipikin, J. H. Freed Dec 2009

A 236-Ghz Fe3+ Epr Study Of Nanoparticles Of The Ferromagnetic Room-Temperature Semiconductor Sn1-XFeXO2 (X = 0.005), Sushil K. Misra, S. I. Andronenko, Alex Punnoose, Dmitry Tipikin, J. H. Freed

Physics Faculty Publications and Presentations

High-frequency (236 GHz) electron paramagnetic resonance (EPR) studies of Fe3+ ions at 255 K are reported in a Sn1-xFexO2 powder with x = 0.005, which is a ferromagnetic semiconductor at room temperature. The observed EPR spectrum can be simulated reasonably well as the overlap of spectra due to four magnetically inequivalent high-spin (HS) Fe3+ ions (S = 5/2). The spectrum intensity is calculated, using the overlap I(BL) + (I(HS1) + I(HS2) + I(HS3) + I(HS4)) 9 x e-0.00001xB, where B is the magnetic field intensity in Gauss, I represents the ...


Controlled Self-Organization And Tunable Collective Phenomena In Surface-Based Nanostructures, Eun Ju Moon Dec 2009

Controlled Self-Organization And Tunable Collective Phenomena In Surface-Based Nanostructures, Eun Ju Moon

Doctoral Dissertations

Nanostructure systems possessing certain desirable features can arise from the self-organization of fundamental building blocks. In this thesis we explore two types of controlled self-assembly mechanisms in hetero-epitaxy: (a) classical assembly of atom vacancies into quasi one-dimensional line structures and (b) quantum-driven assembly of atoms into atomically-smooth two-dimensional thin films. In the classical assembly phenomenon, adatom vacancies, created via elastic strain-relaxation in compressively strained atom chains on a silicon substrate, self-organize into meandering vacancy lines. The average spacing between these line defects can be varied by adjusting the chemical potential μ of the adsorbed atoms. We implemented a lattice model ...


Are Periodic Solar Wind Number Density Structures Formed In The Solar Corona?, N. M. Viall, Harlan E. Spence, J. Kasper Dec 2009

Are Periodic Solar Wind Number Density Structures Formed In The Solar Corona?, N. M. Viall, Harlan E. Spence, J. Kasper

Physics Scholarship

[1] We present an analysis of the alpha to proton solar wind abundance ratio (AHe) during a period characterized by significant large size scale density fluctuations, focusing on an event in which the proton and alpha enhancements are anti-correlated. In a recent study using 11 years (1995–2005) of solar wind observations from the Wind spacecraft, N. M. Viall et al. [2008] showed that periodic proton density structures occurred at particular radial length-scales more often than others. The source of these periodic density structures is a significant and outstanding question. Are they generated in the interplanetary medium, or are they ...


Perturbation Theory Analysis Of Attosecond Photoionization, Anthony F. Starace, Evgeny A. Pronin, M. V. Frolov, N. L. Manakov Dec 2009

Perturbation Theory Analysis Of Attosecond Photoionization, Anthony F. Starace, Evgeny A. Pronin, M. V. Frolov, N. L. Manakov

Anthony F. Starace Publications

Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p^ . For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order ...