Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 1630

Full-Text Articles in Physics

Electrical Properties Of Metal Semiconductor Contacts - Metals On Mos2: A Case Study, Xiao Chang Dec 2017

Electrical Properties Of Metal Semiconductor Contacts - Metals On Mos2: A Case Study, Xiao Chang

Theses

Properties of monolayer semiconductor, MoS2, are presented in the research. Schottky barrier height and Schottky-Mott rules are discussed. The current-voltage measurement and capacitance-voltage measurement are analyzed considering the role of the work


Roles Of Cosolvents On Protein Stability, Zhaoqian Su Dec 2017

Roles Of Cosolvents On Protein Stability, Zhaoqian Su

Dissertations

The function of a protein is determined by its three-dimensional structure which emerges from the delicate balance of forces involving atoms of the protein and the solvent. This balance can be perturbed by changing temperature, pressure, pH and by adding organic molecules known as cosolvents to the solution. Despite the wide use of cosolvents to perturb protein structures in the lab and in living systems, their molecular mechanisms are still not well established. Understanding these mechanisms is a problem of substantial interest, with potential application to the design of new drugs to target proteins. In this dissertation, we probe the ...


Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap Dec 2017

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap

Faculty Publications from Nebraska Center for Materials and Nanoscience

The epsilon Fe2O3 phase of iron oxide has been studied to understand the spin structure and the magnetocrystalline anisotropy in the bulk and in thin films of "-Fe2O3 and Co-doped "-Fe2O3. The preferential magnetization direction in the nanoparticles of "-Fe2O3 is along the a-axis [M. Gich et al., Chem. Mater. 18, 3889 (2006)]. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial ...


Measurement Of The Helicity Asymmetry E In ΩΠ+ΠΠ0 Photoproduction, Z. Akbar, P. Roy, S. Park, V. Crede, A. V. Anisovich, I. Denisenko, E. Klempt, V. A. Nikonov, A. V. Sarantsev, K. P. Adhikari, S. Adhikari, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, S. Boiarinov, W. J. Briscoe, J. Brock, W. K. Brooks, V. D. Burkert, F. T. Cao, C. Carlin, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, Wesley P. Gohn Dec 2017

Measurement Of The Helicity Asymmetry E In Ω → Π+Π−Π0 Photoproduction, Z. Akbar, P. Roy, S. Park, V. Crede, A. V. Anisovich, I. Denisenko, E. Klempt, V. A. Nikonov, A. V. Sarantsev, K. P. Adhikari, S. Adhikari, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, S. Boiarinov, W. J. Briscoe, J. Brock, W. K. Brooks, V. D. Burkert, F. T. Cao, C. Carlin, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, Wesley P. Gohn

Physics and Astronomy Faculty Publications

The double-polarization observable E was studied for the reaction γp using the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at the Thomas Jefferson National Accelerator Facility and the longitudinally polarized frozen-spin target (FROST). The observable was measured from the charged decay mode of the meson, ωπ+ππ0, using a circularly polarized tagged-photon beam with energies ranging from the ω threshold at 1.1 to 2.3 GeV. A partial-wave analysis within the Bonn-Gatchina framework found dominant contributions from the 3/2+ partial wave near threshold, which is identified with the subthreshold N(1720)3/2 ...


Emergent Ising Degrees Of Freedom Above A Double-Stripe Magnetic Ground State, Guanghua Zhang, Rebecca Flint Dec 2017

Emergent Ising Degrees Of Freedom Above A Double-Stripe Magnetic Ground State, Guanghua Zhang, Rebecca Flint

Ames Laboratory Accepted Manuscripts

Double-stripe magnetism [ Q = ( π / 2 , π / 2 ) ] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2 Sb 2 O families of superconductors. Double-stripe order is captured within a J 1 − J 2 − J 3 Heisenberg model in the regime J 3 ≫ J 2 ≫ J 1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector ( π , π ) . Because the ground state is fourfold ...


Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer Dec 2017

Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer

Faculty Publications from Nebraska Center for Materials and Nanoscience

The effect of Y addition and magnetic field on texture and magnetic properties of arc-melted alnico 9 magnets has been investigated. Small additions of Y (1.5 wt.%) develop a (200) texture for the arc-melted alnico 9 magnet. Such a texture is hard to form in cast samples. To achieve this goal, we set up a high-field annealing system with a maximum operation temperature of 12500 C. This system enabled annealing in a field of 45 kOe with subsequent draw annealing for the solutionized buttons; we have been able to substantially increase remanence ratio and coercivity, from 0.70 ...


Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver E. Anderson, Matthew J. Kramer, Wei Tang, Jeff Shield, David J. Sellmyer Dec 2017

Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver E. Anderson, Matthew J. Kramer, Wei Tang, Jeff Shield, David J. Sellmyer

Ames Laboratory Accepted Manuscripts

The effect of Y addition and magnetic field on texture and magnetic properties of arc-melted alnico 9 magnets has been investigated. Small additions of Y (1.5 wt.%) develop a (200) texture for the arc-melted alnico 9 magnet. Such a texture is hard to form in cast samples. To achieve this goal, we set up a high-field annealing system with a maximum operation temperature of 1250 °C. This system enabled annealing in a field of 45 kOe with subsequent draw annealing for the solutionized buttons; we have been able to substantially increase remanence ratio and coercivity, from 0.70 and ...


Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal Dec 2017

Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAlO3/SrTiO3 (001), have aroused significant interest due to their high carrier density (∼1014 cm−2) and strong lateral confinement (∼1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti-3d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (∼1 cm2/Vs). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using ...


Influence Of Classical Anisotropy Fields On The Properties Of Heisenberg Antiferromagnets Within Unified Molecular Field Theory, David C. Johnston Dec 2017

Influence Of Classical Anisotropy Fields On The Properties Of Heisenberg Antiferromagnets Within Unified Molecular Field Theory, David C. Johnston

Ames Laboratory Accepted Manuscripts

A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T , magnetic field H , and anisotropy field parameter h A 1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z -axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the ...


Origin Of The Exciton Mass In The Frustrated Mott Insulator Na2Iro3, Zhanybek Alpichshev, Edbert J. Sie, Fahad Mahmood, Gang Cao, Nuh Gedik Dec 2017

Origin Of The Exciton Mass In The Frustrated Mott Insulator Na2Iro3, Zhanybek Alpichshev, Edbert J. Sie, Fahad Mahmood, Gang Cao, Nuh Gedik

Physics and Astronomy Faculty Publications

We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frustrated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium bound states (excitons) of doublons and holons with the first pulse and suppress the underlying antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by its interaction with the surrounding spins.


Extraction Of The Neutron Electric Form Factor From Measurements Of Inclusive Double Spin Asymmetries, V. Sulkosky, G. Jin, E. Long, Y. -W. Zhang, M. Mihovilovic, A. Kelleher, B. Anderson, D. W. Higinbotham, S. Širca, K. Allada, J. R. M. Annand, T. Averett, W. Bertozzi, W. Boeglin, P. Bradshaw, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, E. Chudakov, R. De Leo, X. Deng, A. Deur, C. Dutta, L. El Fassi, D. Flay, S. Frullani, F. Garibaldi, Wolfgang Korsch Dec 2017

Extraction Of The Neutron Electric Form Factor From Measurements Of Inclusive Double Spin Asymmetries, V. Sulkosky, G. Jin, E. Long, Y. -W. Zhang, M. Mihovilovic, A. Kelleher, B. Anderson, D. W. Higinbotham, S. Širca, K. Allada, J. R. M. Annand, T. Averett, W. Bertozzi, W. Boeglin, P. Bradshaw, A. Camsonne, M. Canan, G. D. Cates, C. Chen, J. -P. Chen, E. Chudakov, R. De Leo, X. Deng, A. Deur, C. Dutta, L. El Fassi, D. Flay, S. Frullani, F. Garibaldi, Wolfgang Korsch

Physics and Astronomy Faculty Publications

Background: Measurements of the neutron charge form factor, GnE, are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GnE with different targets and techniques provides an important test of our handling of these effects.

Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c)2. This technique has very different systematic uncertainties than traditional exclusive measurements and ...


Low Frequency Electromagnetic Radiation From Gravitational Waves Generated By Neutron Stars, Preston Jones, Andri Gretarsson, Douglas Singleton Dec 2017

Low Frequency Electromagnetic Radiation From Gravitational Waves Generated By Neutron Stars, Preston Jones, Andri Gretarsson, Douglas Singleton

Publications

We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into electromagnetic waves and show how this process evades the well-known prohibition against particle production from gravitational waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromagnetic counterpart radiation coming from gravitational waves produced by neutron star oscillations. The detection of electromagnetic counterpart radiation would provide an indirect way of observing gravitational radiation with future spacecraft missions, especially lunar orbiting probes.


Statistical Biophysics Blog: Let’S Stop Being Sloppy About Uncertainty, Daniel M. Zuckerman Dec 2017

Statistical Biophysics Blog: Let’S Stop Being Sloppy About Uncertainty, Daniel M. Zuckerman

Scholar Archive

Molecular dynamics simulations often fail to reach timescales characteristic of equilibrum sampling, so great care must be taken in computing and reporting statistical uncertainty.


Gamma-Ray Metallic Magnetic Calorimeters With Nbta Passive Persistent Switches And Electroformed Au Absorbers, Ruslan Hummatov Dec 2017

Gamma-Ray Metallic Magnetic Calorimeters With Nbta Passive Persistent Switches And Electroformed Au Absorbers, Ruslan Hummatov

Physics & Astronomy ETDs

Metallic Magnetic Calorimeters (MMCs) are low temperature particle detectors which can be used for a wide range of applications including high-resolution γ -ray spectroscopy. High energy resolution in γ -ray spectroscopy is desired for Non Destructive Assay (NDA) of nuclear material and improved measurements of nuclear data. Our group has been developing γ -ray MMCs that should ultimately provide energy resolution more than an order of magnitude better than the benchmark detector technology, high purity germanium detectors (HPGe). Two components of these MMCs have been developed as a part of this dissertation: an on-chip passive superconducting persistent current switch and ...


Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr Dec 2017

Underwater Acoustic Signal Analysis Toolkit, Kirk Bienvenu Jr

University of New Orleans Theses and Dissertations

This project started early in the summer of 2016 when it became evident there was a need for an effective and efficient signal analysis toolkit for the Littoral Acoustic Demonstration Center Gulf Ecological Monitoring and Modeling (LADC-GEMM) Research Consortium. LADC-GEMM collected underwater acoustic data in the northern Gulf of Mexico during the summer of 2015 using Environmental Acoustic Recording Systems (EARS) buoys. Much of the visualization of data was handled through short scripts and executed through terminal commands, each time requiring the data to be loaded into memory and parameters to be fed through arguments. The vision was to develop ...


Automated Species Classification Methods For Passive Acoustic Monitoring Of Beaked Whales, John Lebien Dec 2017

Automated Species Classification Methods For Passive Acoustic Monitoring Of Beaked Whales, John Lebien

University of New Orleans Theses and Dissertations

The Littoral Acoustic Demonstration Center has collected passive acoustic monitoring data in the northern Gulf of Mexico since 2001. Recordings were made in 2007 near the Deepwater Horizon oil spill that provide a baseline for an extensive study of regional marine mammal populations in response to the disaster. Animal density estimates can be derived from detections of echolocation signals in the acoustic data. Beaked whales are of particular interest as they remain one of the least understood groups of marine mammals, and relatively few abundance estimates exist. Efficient methods for classifying detected echolocation transients are essential for mining long-term passive ...


An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr. Dec 2017

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr.

University of New Orleans Theses and Dissertations

In this work, we design a linear, two step implicit finite difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. Three separate models are analyzed, all of which can be described as systems of partial differential equations (PDE)s with nonlinear diffusion and reaction, where the biological colony grows and decays based on the substrate bioavailability. The systems under investigation are all complex models describing the dynamics of biological films. In view of the difficulties to calculate analytical solutions of the models, we design here a numerical ...


R14(Au, M)51 (R = Y, La−Nd, Sm−Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In,Sn, Sb, Bi): Stability Ranges And Site Preference In The Gd14ag51 Structure Type, Chris Celania, Volodymyr Smetana, Alessia Provino, Pietro Manfrinetti, Anja-Verena Mudring Dec 2017

R14(Au, M)51 (R = Y, La−Nd, Sm−Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In,Sn, Sb, Bi): Stability Ranges And Site Preference In The Gd14ag51 Structure Type, Chris Celania, Volodymyr Smetana, Alessia Provino, Pietro Manfrinetti, Anja-Verena Mudring

Ames Laboratory Accepted Manuscripts

Twenty new ternary representatives of the Gd14Ag51 structure type have been synthesized within the R-Au-M family (R = Y, La–Nd, Sm–Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)–12.918(1) Å and c = 8.9967(3)–9.385(1) Å, and incorporate different ...


Spin-Valley Coherent Phases Of The V = 0 Quantum Hall State In Bilayer Graphene, Ganpathy Murthy, Efrat Shimshoni, H. A. Fertig Dec 2017

Spin-Valley Coherent Phases Of The V = 0 Quantum Hall State In Bilayer Graphene, Ganpathy Murthy, Efrat Shimshoni, H. A. Fertig

Physics and Astronomy Faculty Publications

Bilayer graphene (BLG) offers a rich platform for broken-symmetry states stabilized by interactions. In this work, we study the phase diagram of BLG in the quantum Hall regime at filling factor ν = 0 within the Hartree-Fock approximation. In the simplest noninteracting situation, this system has eight (nearly) degenerate Landau levels near the Fermi energy, characterized by spin, valley, and orbital quantum numbers. We incorporate in our study two effects not previously considered: (i) the nonperturbative effect of trigonal warping in the single-particle Hamiltonian, and (ii) short-range SU(4) symmetry-breaking interactions that distinguish the energetics of the orbitals. We find within ...


Muon-Neutrino Electron Elastic Scattering And A Search For The Muon-Neutrino Magnetic Moment In The Nova Near Detector, Biao Wang Dec 2017

Muon-Neutrino Electron Elastic Scattering And A Search For The Muon-Neutrino Magnetic Moment In The Nova Near Detector, Biao Wang

Physics Theses and Dissertations

We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino-electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identifications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. By using 3.62e20 POT dataset in the NOvA near detector, we find 1.58e-9 Bohr magneton as the 90% C.L. upper limit. We also find a sensitivity of ...


Configuration–Interaction Wave Functions And Transition Probabilities For N Ii, Khulud Samnodi Dec 2017

Configuration–Interaction Wave Functions And Transition Probabilities For N Ii, Khulud Samnodi

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

The energy levels, lifetimes, oscillator strengths, and transition probabilities of N II lines have been reported in this thesis. We have used the Hartree-Fock (HF) and Multiconfiguration Hartree-Fock (MCHF) methods in our calculations. The relativistic operators mass correction, one-body Darwin term, spin-orbit interaction, and spin-other-orbit have been included in the Breit-Pauli Hamiltonian in our calculations of atomic parameters of singly-ionized nitrogen. We considered 70 levels of the 2s2 2p2, 2s2 2p3, 2s2 2p 3p, 2s2 2p 3s, 2s2 2p 4p, 2s2 2p 3d, 2s2 2p 4s, and 2s2 2p 4d ...


Nematicity, Magnetism And Superconductivity In Fese, Anna E. Böhmer, Andreas Kreisel Dec 2017

Nematicity, Magnetism And Superconductivity In Fese, Anna E. Böhmer, Andreas Kreisel

Ames Laboratory Accepted Manuscripts

Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these ...


Plasma Waves In Jupiter’S High Latitude Regions: Observations From The Juno Spacecraft, Sadie Suzanne Tetrick Dec 2017

Plasma Waves In Jupiter’S High Latitude Regions: Observations From The Juno Spacecraft, Sadie Suzanne Tetrick

Theses and Dissertations

The Juno Waves instrument detected new broadband plasma wave emissions on the first three successful passes over the low altitude polar regions of Jupiter on Days 240 and 346 of 2016 and Day 033 of 2017. This study investigated the characteristics of these emissions and found similarities to whistler-mode auroral hiss observed at Earth, including the funnel-shaped frequency-time features. The electron cyclotron frequency was much higher than both the emission frequencies for all three days and the local plasma frequency, which was assumed to be 20 – 40 kHz. The electric to magnetic field (E/cB) ratio was around three near ...


Velocity Space Degrees Of Freedom Of Plasma Fluctuations, Sean Walter Mattingly Dec 2017

Velocity Space Degrees Of Freedom Of Plasma Fluctuations, Sean Walter Mattingly

Theses and Dissertations

This thesis demonstrates a measurement of a plasma fluctuation velocity-space cross-correlation matrix using laser induced fluorescence. The plasma fluctuation eigenmode structure on the ion velocity distribution function can be empirically determined through singular value decomposition from this measurement. This decomposition also gives the relative strengths of the modes as a function of frequency. Symmetry properties of the matrix quantify systematic error. The relation between the eigenmodes and plasma kinetic fluctuation modes is explored. A generalized wave admittance is calculated for these eigenmodes. Since the measurement is a localized technique, it may be applied to plasmas in which a single point ...


First-Principles Study On The Electronic, Optical, And Transport Properties Of Monolayer Α- And Β-Gese, Yuanfeng Xu, Hao Zhang, Hezhu Shao, Gang Ni, Jing Li, Hongliang Lu, Rongjun Zhang, Bo Peng, Yongyuan Zhu, Heyuan Zhu, Costas M. Soukoulis Dec 2017

First-Principles Study On The Electronic, Optical, And Transport Properties Of Monolayer Α- And Β-Gese, Yuanfeng Xu, Hao Zhang, Hezhu Shao, Gang Ni, Jing Li, Hongliang Lu, Rongjun Zhang, Bo Peng, Yongyuan Zhu, Heyuan Zhu, Costas M. Soukoulis

Ames Laboratory Accepted Manuscripts

The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer alpha- and beta-GeSe, revealing a direct band gap of 1.61 eV for monolayer alpha-GeSe and an indirect band gap of 2.47 eV for monolayer beta-GeSe. For monolayer beta-GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93 x 10(4) cm(2)/Vs along the armchair direction, comparable to that of black phosphorene. Furthermore, for beta-GeSe, robust band ...


Diffusion Of Two-Dimensional Epitaxial Clusters On Metal (100) Surfaces: Facile Versus Nucleation-Mediated Behavior And Their Merging For Larger Sizes, King C. Lai, Da-Jiang Liu, James W. Evans Dec 2017

Diffusion Of Two-Dimensional Epitaxial Clusters On Metal (100) Surfaces: Facile Versus Nucleation-Mediated Behavior And Their Merging For Larger Sizes, King C. Lai, Da-Jiang Liu, James W. Evans

Ames Laboratory Accepted Manuscripts

For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN∼N−β with β=3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N<9; (ii) slow nucleation-mediated diffusion with small β<1 for “perfect” sizes N=Np=L2 or L(L+1), for L=3,4, ... having unique ground-state shapes, for moderate sizes 9≤N≤O(102); the same also applies for N=Np+3, Np+4, ...(iii) facile diffusion but with large β>2 for N=Np+1 and Np+2 also for moderate sizes 9≤N≤O(102); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1≲β<3/2, reflecting the quasifacetted structure of clusters, for larger N=O(102) to N=O(103); (v) classic scaling with β=3/2 for very large N=O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1. Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.


Local Nematic Susceptibility In Stressed Bafe 2 As 2 From Nmr Electric Field Gradient Measurements, T. Kissikov, R. Sarkar, M. Lawson, B. T. Bush, Erik I. Timmons, Makariy A. Tanatar, Ruslan Prozorov, S. L. Bud’Ko, Paul C. Canfield, R. M. Fernandes, W. F. Goh, W. E. Pickett, N. J. Curro Dec 2017

Local Nematic Susceptibility In Stressed Bafe 2 As 2 From Nmr Electric Field Gradient Measurements, T. Kissikov, R. Sarkar, M. Lawson, B. T. Bush, Erik I. Timmons, Makariy A. Tanatar, Ruslan Prozorov, S. L. Bud’Ko, Paul C. Canfield, R. M. Fernandes, W. F. Goh, W. E. Pickett, N. J. Curro

Ames Laboratory Accepted Manuscripts

The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As porbitals and is a sensitive probe of local nematicity in BaFe2As2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative ...


The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf Dec 2017

The Future Of Nuclear Security In Moroccan Territory After The Creation Of The New Moroccan Agency Of Nuclear And Radiological Safety And Security: Opportunities And Challenges, Amal Touarsi, Amina Kharchaf

International Journal of Nuclear Security

Nowadays, a security regime for protecting nuclear and radiological material—providing an intelligent national regulatory institution and establishing national security laws—is necessary in order for a state to ensure security of nuclear and radiological materials used within its borders.

This paper focuses on discussing the opportunities and challenges facing the future of nuclear security after the creation of the new Moroccan Agency of Nuclear and Radiological Safety and Security.


The Future Of Nuclear Security: A Medical Physicist’S Perspective, Katharine E. Thomson Dec 2017

The Future Of Nuclear Security: A Medical Physicist’S Perspective, Katharine E. Thomson

International Journal of Nuclear Security

Planning for the future of nuclear security is a vital and complex task, requiring cooperation and contribution from many disciplines and industries. This diversity of expertise should include the medical sector, which faces many of the same challenges as the nuclear industry: controlling access to dangerous material, creating a strong security culture, cooperating with the wider world and engaging the public.

Medical physicists, of which the author is one, oversee all aspects of small-scale radiation use. This paper discusses three key areas increasingly important to both medical and nuclear uses of radioactive materials: public engagement, prevention of nuclear and radiological ...


Untangling The Mechanics Of Co-Entangled Cytoskeletal Networks, Shea Ricketts Dec 2017

Untangling The Mechanics Of Co-Entangled Cytoskeletal Networks, Shea Ricketts

Undergraduate Honors Theses

Active networks of interlinked protein filaments comprising the cytoskeleton largely control cellular mechanics and cell architecture. By forming cytoskeleton networks that combine motile, semiflexible actin with rigid, supportive microtubules, cells maintain structural integrity and shape while being able to flow and move. To elucidate the complex mechanical processes that arise between interacting networks of actin and microtubules within cells, we create a suite of randomly-oriented, well mixed networks of actin and microtubules by co-polymerizing varying ratios of both proteins in situ. We use optical tweezer microrheology in order to characterize the nonlinear mesoscale mechanics of in vitro co-entangled actin-microtubule composites ...