Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Spectroscopy

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 139

Full-Text Articles in Physics

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument ...


Proof Of Concept And Experimental Design For Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System (R-Lema), Amber Jessica Sucich Jun 2019

Proof Of Concept And Experimental Design For Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System (R-Lema), Amber Jessica Sucich

Physics

As the Earth’s resources are diminishing, it has become clear that the human race needs to find alternative resources and replenish the Earth’s natural reservoir. One way to do this is to consider interstellar objects. Interstellar objects, such as asteroids, offer mineral and other resources with great potential for mining. Before considering mining a rocky body, it is imperative to first know the complete composition of an object. Using the method of traveling to the objects, drilling into them, and bringing back samples is impractical, inefficient, and expensive. This method is also limiting, as only certain target areas ...


Optical Excitation Of Metastable Krypton And Photoassociative Spectroscopy Of Ultracold Rbar, Grady R. White Apr 2019

Optical Excitation Of Metastable Krypton And Photoassociative Spectroscopy Of Ultracold Rbar, Grady R. White

Physics Theses & Dissertations

In this presentation, we discuss results from two separate bodies of work. In the first, we investigate all-optical excitation methods to produce metastable-state krypton. The high energies required to excite rare gases out of their ground state present a unique challenge in the context of laser experiments. Laser physics work with rare gases often relies on excitation within an RF discharge. All-optical excitation is a promising replacement for RF discharges, avoids problems caused by ion production and may eventually allow for higher efficiencies. We examine three separate methods of all-optical metastable-state production: using an ArF excimer laser, using the third ...


Evaluation Of X-Ray Spectroscopic Techniques For Determining Temperature And Density In Plasmas, Theodore Scott Lane Jan 2019

Evaluation Of X-Ray Spectroscopic Techniques For Determining Temperature And Density In Plasmas, Theodore Scott Lane

Graduate Theses, Dissertations, and Problem Reports

Temperature and density measurements of plasmas are important for understanding various phenomena. For example, equations of state, most scaling arguments for Inertial Confinement Fusion and laboratory astrophysics all rely upon accurate knowledge of temperature and density. Spectroscopy is a non-invasive technique to measure these quantities. In this work we establish a new spectroscopic technique by using it to determine temperature. We also compare and contrast the capability of two codes, PrismSPECT and ATOMIC, to infer electron density from experimentally acquired spectra via Stark broadening.

We compare and contrast the capability of isoelectronic line ratios and inter-stage line ratios in an ...


Rempd Spectroscopy Of Thf+ And A Modular Delayed Self-Heterodyne Interferometer, Kevin Boyce Jan 2019

Rempd Spectroscopy Of Thf+ And A Modular Delayed Self-Heterodyne Interferometer, Kevin Boyce

Undergraduate Honors Theses

The JILA eEDM project currently seeks to improve its sensitivity to the electron’s permanent electric dipole moment, a quantity of fundamental importance to new extensions to the Standard Model, using tabletop experimental techniques familiar to atomic, molecular, and optical physics. The current generation of the experiment uses HfF+ polarized molecular ions trapped in a rotating electric bias field to measure the Stark shift on a particular pair of hyperfine states due to this permanent dipole moment. However, a future generation of the experiment hopes to perform the measurement in a different species, ThF+, due to its intrinsically stronger interatomic ...


Time-Resolved Double-Resonance Spectroscopy: Lifetime Measurement Of The 61Σ+G(7,31) Electronic State Of Molecular Sodium, Michael Saaranen, Dinesh Wagle, Emma Mclaughlin, Amelia Paladino, Seth T. Ashman, Burcin Bayram Nov 2018

Time-Resolved Double-Resonance Spectroscopy: Lifetime Measurement Of The 61Σ+G(7,31) Electronic State Of Molecular Sodium, Michael Saaranen, Dinesh Wagle, Emma Mclaughlin, Amelia Paladino, Seth T. Ashman, Burcin Bayram

Seth Ashman

We report on the lifetime measurement of the 61Σ+g(7,31) state of Na2 molecules, produced in a heat-pipe oven, using a time-resolved spectroscopic technique. The 61Σ+g(7,31) level was populated by two-step two-color double resonance excitation via the intermediate A1Σ+u(8,30) state. The excitation scheme was done using two synchronized pulsed dye lasers pumped by a Nd:YAG laser operating at the second harmonics. The fluorescence emitted upon decay to the final state was measured using a time-correlated photon counting technique, as a function of argon pressure. From this, the radiative lifetime was extracted ...


Enhanced Coupling Of Light Into A Turbid Medium Through Microscopic Interface Engineering, Jonathan V. Thompson, Brett H. Hokr, Wihan Kim, Charles W. Ballmann, Brian E. Applegate, Javier Jo, Alexey Yamilov, Hui Cao, Marlan O. Scully, Vladislav V. Yakovlev Oct 2018

Enhanced Coupling Of Light Into A Turbid Medium Through Microscopic Interface Engineering, Jonathan V. Thompson, Brett H. Hokr, Wihan Kim, Charles W. Ballmann, Brian E. Applegate, Javier Jo, Alexey Yamilov, Hui Cao, Marlan O. Scully, Vladislav V. Yakovlev

Alexey Yamilov

There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of ...


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl Sep 2018

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the ...


Kinetic Picture Of Ion Acoustic Wave Reflection Using Laser-Induced Fluorescence, Jorge Alberto Berumen Cantu Aug 2018

Kinetic Picture Of Ion Acoustic Wave Reflection Using Laser-Induced Fluorescence, Jorge Alberto Berumen Cantu

Theses and Dissertations

An examination of the first laser-induced fluorescence measurements of ion-acoustic wave reflection is presented in this dissertation. The experiment is performed in a multipole cylinindrical chamber using singly-ionized argon (ArII) plasma produced by a means of a hot cathode. Ion-acoustic waves are launched from a mesh antenna and reflected/absorbed by a biased, solid boundary (electrode). A kinetic analysis of wave reflection is carried out through LIF's ability of resolving ion phase-space. A comparison between Langmuir probe and LIF diagnostics is presented, with complementary Electric-field probe measurements.


Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—H And C—C Bond Activation Of 1-Pentene And 2-Pentene, Wenjin Cao, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang Jul 2018

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—H And C—C Bond Activation Of 1-Pentene And 2-Pentene, Wenjin Cao, Yuchen Zhang, Silver Nyambo, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-pentene and 2-pentene are carried out in a laser-vaporization molecular beam source. The two reactions yield the same metal-hydrocarbon products from the dehydrogenation and carbon–carbon bond cleavage of the pentene molecules. The dehydrogenated species La(C5H8) is the major product, whereas the carbon–carbon bond cleaved species La(C2H2) and La(C3H4) are the minor ones. La(C10H18) is also observed and is presumably formed by La(C5H8) addition to a second pentene molecule. La(C5H8) and ...


Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le May 2018

Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le

Physics & Astronomy ETDs

A Metallic Magnetic Calorimeter (MMC) is a cryogenic calorimetric particle detector that employs a metallic paramagnetic alloy as the temperature sensor material. MMCs are used in many different applications, but this work will focus on their uses in high energy resolution gamma-ray spectroscopy. This technology is of great interest to the field of Nuclear Forensics and Nuclear Safeguards as a non-destructive assay for isotopic analysis of nuclear samples. The energy resolution of MMCs is an order of magnitude higher than the benchmark High Purity Germanium (HPGe) detectors that are currently used in the field and MMCs are also poised to ...


Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang May 2018

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By Association And Carbon-Carbon Bond Cleavage Of Isoprene, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2 ...


Tip-Enhanced Raman Scattering Of Dna Aptamers For Listeria Monocytogenes, Siyu He, Hongyuan Li, Carmen L. Gomes, Dmitri V. Voronine May 2018

Tip-Enhanced Raman Scattering Of Dna Aptamers For Listeria Monocytogenes, Siyu He, Hongyuan Li, Carmen L. Gomes, Dmitri V. Voronine

Mechanical Engineering Publications

Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition ...


Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson Mar 2018

Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson

Theses and Dissertations

Diode-pumped rare gas lasers (DPRGL) have been in development for their potential to become high energy lasers with excellent beam quality that is typical of gas lasers. DPRGL require metastable densities on the order of 1013 cm-3 at pressures around one atmosphere for efficient operation. Argon 1s5 number densities have been measured in microhollow cathode discharges (MHCD) using tunable diode laser absorption spectroscopy. The MHCD had copper electrodes with gaps of 127 and 254 µm and hole diameters from 100-400 µm. Absorbance was measured at pressures of 37 Torr up to 400 Torr, where absorbance could no longer ...


Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang Jan 2018

Lanthanum-Mediated Dehydrogenation Of Butenes: Spectroscopy And Formation Of La(C4H6) Isomers, Wenjin Cao, Dilkrushi Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-butene, 2-butene, and isobutene are carried out in a laser-vaporization molecular beam source. The three reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butenes. The dehydrogenated species La(C4H6) is the major product, which is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectrum of La(C4H6) produced from the La+1-butene reaction exhibits two band systems, whereas the MATI spectra produced from the La+2-butene and isobutene reactions display only a single band system. Each ...


Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier Jan 2018

Detection And Characterization Of The Tin Dihydride (Snh2 And Snd2) Molecule In The Gas Phase, Tony C. Smith, Dennis J. Clouthier

Chemistry Faculty Publications

The SnH2 and SnD2 molecules have been detected for the first time in the gas phase by laser-induced fluorescence (LIF) and emission spectroscopic techniques through the Ã1B1–X̃1A1 electronic transition. These reactive species were prepared in a pulsed electric discharge jet using (CH3)4Sn or SnH4/SnD4 precursors diluted in high pressure argon. Transitions to the electronic excited state of the jet-cooled molecules were probed with LIF, and the ground state energy levels were measured from single rovibronic level emission spectra. The LIF spectrum of SnD2 afforded ...


The First Precision Measurement Of The Electron Electric Dipole Moment In Trapped Molecular Ions, Daniel Gresh Jan 2018

The First Precision Measurement Of The Electron Electric Dipole Moment In Trapped Molecular Ions, Daniel Gresh

Physics Graduate Theses & Dissertations

A measurement of the permanent electric dipole moment of the electron (eEDM, de) is a direct probe of physics beyond the Standard Model. Our experiment makes a measurement of the eEDM in Hafnium Fluoride ions (HfF) using a novel radiofrequency ion trap where we routinely achieve measurement coherence times of > 1 s. This thesis presents the result of our first generation eEDM measurement, where we measure de = (0.9±7.7stat±1.7syst) ✕ 10-29e⋅cm, a value consistent with zero, which corresponds to a 90\% confidence upper bound of de < 1.3 ✕ 10-28 e ⋅ cm ...


Velocity-Map Imaging Photoelectron Spectroscopy Of Small Molecular Anions, Allan Maple De Oliveira Jan 2018

Velocity-Map Imaging Photoelectron Spectroscopy Of Small Molecular Anions, Allan Maple De Oliveira

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

Gas phase anion photoelectron spectroscopy presents an opportunity for investigating molecules that are inaccessible by other experimental techniques, by providing data on the structure, reactivity and energetics of short-lived radicals and transition state species. Our recent development of a novel, plasma entrainment source of cold, weakly-bound anions opens a door to new exotic species to be investigated. In this thesis, I explore the capabilities of photoelectron spectroscopy and its application to small exotic molecular anions, while further developing and employing the novel dual-valve ion source.

The thesis begins with a brief history of photoelectron spectroscopy, followed by a description of ...


Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi Jan 2018

Resonant Anisotropic Emission In Rabbitt Spectroscopy, Bejan M. Ghomashi

Honors Undergraduate Theses

A variant of RABBITT pump-probe spectroscopy in which the attosecond pulse train comprises both even and odd harmonics of the fundamental IR probe frequency is explored to measure time-resolved photoelectron emission in systems that exhibit autoionizing states. It is shown that the group delay of both one-photon and two-photon resonant transitions is directly encoded in the energy-resolved photoelectron anisotropy as a function of the pump-probe time-delay. This principle is illustrated for a 1D model with symmetric zero-range potentials that supports both bound states and shape-resonances. The model is studied using both perturbation theory and solving the time-dependent Schodinger equation on ...


Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione Sep 2017

Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione

All Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium electrode and electrolyte materials for advanced rechargeable lithium ion batteries. Three projects are described in this thesis. The first involves 23Na and 37Al static and magic angle spinning NMR studies of NaAlH4/C anode materials for advanced rechargeable batteries. The second project is a study of paramagnetic lithium transition-metal phosphate cathode materials for Li-ion batteries, where 7Li, and 31P single crystal NMR was used in order to obtain detailed information on the local electronic and magnetic environments. The third project investigates ...


Lanthanum-Mediated Dehydrogenation Of 1- And 2-Butynes: Spectroscopy And Formation Of La(C4H4) Isomers, Wenjin Cao, Dilrukshi C. Hewage, Dong-Sheng Yang Aug 2017

Lanthanum-Mediated Dehydrogenation Of 1- And 2-Butynes: Spectroscopy And Formation Of La(C4H4) Isomers, Wenjin Cao, Dilrukshi C. Hewage, Dong-Sheng Yang

Chemistry Faculty Publications

La atom reactions with 1-butyne and 2-butyne are carried out in a laser-vaporization molecular beam source. Both reactions yield the same La-hydrocarbon products from the dehydrogenation and carbon-carbon bond cleavage and coupling of the butynes. The dehydrogenated species La(C4H4) is characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of La(C4H4) produced from the two reactions exhibit two identical transitions, each consisting of a strong origin band and several vibrational intervals. The two transitions are assigned to the ionization of two isomers: La(η4–CH2 ...


Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh Aug 2017

Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh

Theses and Dissertations

Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of adult vision loss. Although a great deal of progress has been made in ophthalmological examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, there still remain outstanding questions regarding the molecular and biochemical changes involved. To discover the biochemical mechanisms underlying the development and progression of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal models provide a suitable resource for temporal detection ...


Enhanced Coupling Of Light Into A Turbid Medium Through Microscopic Interface Engineering, Jonathan V. Thompson, Brett H. Hokr, Wihan Kim, Charles W. Ballmann, Brian E. Applegate, Javier Jo, Alexey Yamilov, Hui Cao, Marlan O. Scully, Vladislav V. Yakovlev Jul 2017

Enhanced Coupling Of Light Into A Turbid Medium Through Microscopic Interface Engineering, Jonathan V. Thompson, Brett H. Hokr, Wihan Kim, Charles W. Ballmann, Brian E. Applegate, Javier Jo, Alexey Yamilov, Hui Cao, Marlan O. Scully, Vladislav V. Yakovlev

Physics Faculty Research & Creative Works

There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of ...


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the ...


Quantifying Biochemical Alterations In Brown And Subcutaneous White Adipose Tissues Of Mice Using Fourier Transform Infrared Widefield Imaging, Ebrahim Aboualizadeh, Owen T. Carmichael, Ping He, Diana C. Albarado, Christopher D. Morrison, Carol J. Hirschmugl May 2017

Quantifying Biochemical Alterations In Brown And Subcutaneous White Adipose Tissues Of Mice Using Fourier Transform Infrared Widefield Imaging, Ebrahim Aboualizadeh, Owen T. Carmichael, Ping He, Diana C. Albarado, Christopher D. Morrison, Carol J. Hirschmugl

Physics Faculty Articles

Stimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR) imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT) of 6 week-old C57BL6 mice exposed to 30°C (N = 5), 24°C (N = 5), and 10°C (N = 5) conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as ...


Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—C Bond Cleavage And Coupling Of Propene, Dilrukshi C. Hewage, Wenjin Cao, Sudesh Kumari, Ruchira Silva, Tao Hong Li, Dong-Sheng Yang May 2017

Spectroscopy And Formation Of Lanthanum-Hydrocarbon Radicals Formed By C—C Bond Cleavage And Coupling Of Propene, Dilrukshi C. Hewage, Wenjin Cao, Sudesh Kumari, Ruchira Silva, Tao Hong Li, Dong-Sheng Yang

Chemistry Faculty Publications

La reaction with propene is carried out in a laser-vaporization molecular beam source. Three La-hydrocarbon radicals are characterized by mass-analyzed threshold ionization (MATI) spectroscopy. One of these radicals is methylenelanthanum [La(CH2)] (Cs), a Schrock-type metal carbene. The other two are a five-membered 1-lanthanacyclopent-3-en [La(CH2CHCHCH2)] (Cs) and a tetrahedron-like trimethylenemethanelanthanum [La(C(CH2)3)] (C3v). Adiabatic ionization energies and metal-ligand stretching and hydrocarbon-based bending frequencies of these species are measured from the MATI spectra, preferred structures and electronic states are identified by comparing the experimental measurements and spectral simulations, and reaction ...


Radio Wavelength Studies Of The Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, And Developing Active Learning Activities For Astronomy Laboratory Courses, Dominic Alesio Ludovici May 2017

Radio Wavelength Studies Of The Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, And Developing Active Learning Activities For Astronomy Laboratory Courses, Dominic Alesio Ludovici

Theses and Dissertations

The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of ...


Terahertz Molecular Spectroscopy As A Tool For Analytical Probing Of Cellular Metabolism, Mitchell Cameron Paul Jan 2017

Terahertz Molecular Spectroscopy As A Tool For Analytical Probing Of Cellular Metabolism, Mitchell Cameron Paul

Browse all Theses and Dissertations

Terahertz spectroscopy has found use as an analytical tool in determining chemical composition of exhaled human breath. This thesis demonstrates a novel application of this technology - analytical sensing of gaseous metabolic products of several types of human cell cultures. An innovative experimental system was developed for probing cellular metabolism using terahertz [THz] rotational spectroscopy. Gaseous emissions of cell cultures were analyzed and compared between several cell types. Cancerous and healthy lung cells as well as cancerous liver cells were studied. This technique carries a lot of promise as a noninvasive method of distinguishing between cell types and identifying cell pathologies ...


Terahertz Molecular Spectroscopy As A Tool For Analytical Probing Of Cellular Metabolism, Mitchell Cameron Paul Jan 2017

Terahertz Molecular Spectroscopy As A Tool For Analytical Probing Of Cellular Metabolism, Mitchell Cameron Paul

Browse all Theses and Dissertations

Terahertz spectroscopy has found use as an analytical tool in determining chemical composition of exhaled human breath. This thesis demonstrates a novel application of this technology - analytical sensing of gaseous metabolic products of several types of human cell cultures. An innovative experimental system was developed for probing cellular metabolism using terahertz [THz] rotational spectroscopy. Gaseous emissions of cell cultures were analyzed and compared between several cell types. Cancerous and healthy lung cells as well as cancerous liver cells were studied. This technique carries a lot of promise as a noninvasive method of distinguishing between cell types and identifying cell pathologies ...


Generation Of Mid-Infrared Frequency Combs For Spectroscopic Applications, Daniel L. Maser Jan 2017

Generation Of Mid-Infrared Frequency Combs For Spectroscopic Applications, Daniel L. Maser

Physics Graduate Theses & Dissertations

Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 μm. However, options become substantially more ...