Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 78

Full-Text Articles in Biomedical Engineering and Bioengineering

Low Cost, Carbon-Based Micro- And Nano-Structured Electrodes For High Performance Supercapacitors, Kryssia Pamela Díaz Orellana May 2016

Low Cost, Carbon-Based Micro- And Nano-Structured Electrodes For High Performance Supercapacitors, Kryssia Pamela Díaz Orellana

All Dissertations

Advances in the development of sustainable, low-cost, and reliable energy storage technologies have become a high priority as the demand for high power, and high energy storage devices has risen with emerging technologies in electronics, transportation, and renewable energy systems. Supercapacitors, due to their relatively high energy density and power density, provide an attractive alternative to bridge the gap between conventional batteries and capacitors. Materials ranging from high surface area, inert carbons to Faradaic metal oxides and conducting polymers have been used to achieve a range of performance properties in supercapacitors. However, the development of new technologies faces many challenges ...


Effects Of Growth Factor Supplementation And Environmental Conditions On Human Adipose-Derived Stem Cell Differentiation Towards Urothelial Lineage, James Turner Dec 2015

Effects Of Growth Factor Supplementation And Environmental Conditions On Human Adipose-Derived Stem Cell Differentiation Towards Urothelial Lineage, James Turner

All Dissertations

In recent years, tissue engineering of the bladder has undergone many technological advances. Autologous urothelial cells have been used in animal models and have shown increased performance for ureteral reconstruction compared to unseeded grafts. However, since patients may lack a reliable source of native urothelial cells due to the nature of their specific bladder disease, autologous cells are not an ideal source clinically, and an alternate cell source must be explored. Adipose derived stem cells (ADSCs) are an attractive cell source for such regenerative medicine applications as they have been extensively studied for their multipotential differentiation, immunosuppressive properties, ease of ...


Manipulation Of The Electrical Double Layer For Control And Sensing In A Solid State Nanopore, Samuel L. Bearden Aug 2015

Manipulation Of The Electrical Double Layer For Control And Sensing In A Solid State Nanopore, Samuel L. Bearden

All Dissertations

Nanopores have been explored with the goal of achieving non-functionalized, sub-molecular sensors, primarily with the purpose of producing fast, low-cost DNA sequencers. Because of the nanoscale volume within the nanopore structure, it is possible to isolate individual molecular and sub-molecular analytes. Nanopore DNA sequencing has remained elusive due to high noise levels and the challenge of obtaining single-nucleotide resolution. However, the complete electrical double layer within the nanopore is a key feature of fluid-nanopore interaction and has been neglected in previous studies. By exploring interactions with the electrical double layer in various nanopore systems, we characterize the material, electrical, and ...


Understanding The Fusion And Maturation Of Tissue Engineered Linear Blood Vessels Using Magnetic Cellular Spheroids, Timothy R. Olsen May 2015

Understanding The Fusion And Maturation Of Tissue Engineered Linear Blood Vessels Using Magnetic Cellular Spheroids, Timothy R. Olsen

All Dissertations

Cellular spheroids are attractive for tissue fabrication due to having precise control over cell and extracellular matrix (ECM) composition, the ability for upscaled production and repeatability, their three-dimensional nature and the fact that spheroids will produce their own ECM over time. A critical process in the fabrication of complex tissue structures with cellular spheroids is related to their fusion and maturation. Tissue fusion is a self-assembly process in which two or more distinct cell populations, or tissues, make contact and coalesce to form a single cohesive structure. Maturation of tissue engineered constructs involves developing the mechanical properties and ECM compositions ...


Development Of A Transport System For Advancing Tissue Engineering And Cell Identification, Suzanne Mae Tabbaa Dec 2014

Development Of A Transport System For Advancing Tissue Engineering And Cell Identification, Suzanne Mae Tabbaa

All Dissertations

This work centers on the development of a novel passive transport system for two tissue engineering applications – cell distribution and cell separation. This approach relies on a wicking fiber-based system, derived from the textile field that functions by directing and maintaining transport of cells as well as fluids and biomolecules. This system has the ability to enhance cell movement for both the purpose of cell seeding distribution as well as to isolate specific cell types from heterogeneous cell populations.

The success of spinal fusions and large bone defects is often limited by the decreased surrounding vasculature and the ability of ...


Platform Technologies To Advance Clinically Relevant Tissue Engineered Heart Valve Products, Leslie Neil Sierad Aug 2014

Platform Technologies To Advance Clinically Relevant Tissue Engineered Heart Valve Products, Leslie Neil Sierad

All Dissertations

Diseased heart valves are commonly replaced by mechanical, bioprosthetic, or allograft heart valves. These replacements provide major improvements in cardiac function and quality of life, but have significant limitations and eventually require surgical replacement within 15-20 years. These risks are particularly prominent in pediatric patients and young adults. The field of tissue engineering and regenerative medicine, which combines scaffolds and cells, holds great promise in developing living replacement heart valves that would self-repair and grow in size along with the growing children.

The long-term goal of this project is to generate living, tissue-engineered heart valves from biological scaffolds and autologous ...


Identification Of Novel Genes Regulating Elastic Fiber Formation Through Expression Profiling Analysis Of Elastogenic Models, Erin Sproul Dec 2013

Identification Of Novel Genes Regulating Elastic Fiber Formation Through Expression Profiling Analysis Of Elastogenic Models, Erin Sproul

All Dissertations

Background: Particularly important to the mechanical performance of native arterial blood vessels is elastin, an extracellular matrix (ECM) protein deposited by VSMCs in the form of elastic fibers, arranged in concentric lamellae in the media of the vessel wall. In addition to serving as major structural elements of arterial walls, providing extensibility and elastic recoil, elastic fibers also influence vascular cell behaviors. For these reasons tissue engineers are attempting to exploit elastic fiber biology to enhance vascular graft design and patency. Therefore, developing a greater understanding of the molecular mechanisms of elastogenesis may offer opportunities to control elastogenesis in tissue ...


Vascular Nanomedicine: Site Specific Delivery Of Elastin Stabilizing Therapeutics To Damaged Arteries, Aditi Sinha Dec 2013

Vascular Nanomedicine: Site Specific Delivery Of Elastin Stabilizing Therapeutics To Damaged Arteries, Aditi Sinha

All Dissertations

Elastin, a structural protein in the extra-cellular matrix, plays a critical role in the normal functioning of blood vessels. Apart from performing its primary function of providing resilience to arteries, it also plays major role in regulating cell-cell and cell-matrix interactions, response to injury, and morphogenesis. Medial arterial calcification (MAC) and abdominal aortic aneurysm (AAA) are two diseases where the structural and functional integrity of elastin is severely compromised. Although the clinical presentation of MAC and AAA differ, they have one common underlying causative mechanism--pathological degradation of elastin. Hence prevention of elastin degradation in the early stages of MAC and ...


In Vitro Simulation Of Pathological Bone Conditions To Predict Clinical Outcome Of Bone Tissue Engineered Materials, Duong Nguyen Dec 2013

In Vitro Simulation Of Pathological Bone Conditions To Predict Clinical Outcome Of Bone Tissue Engineered Materials, Duong Nguyen

All Dissertations

According to the Centers for Disease Control, the geriatric population of ≥65 years of age will increase to 51.5 million in 2020; 40% of white women and 13% of white men will be at risk for fragility fractures or fractures sustained under normal stress and loading conditions due to bone disease, leading to hospitalization and surgical treatment. Fracture management strategies can be divided into pharmaceutical therapy, surgical intervention, and tissue regeneration for fracture prevention, fracture stabilization, and fracture site regeneration, respectively. However, these strategies fail to accommodate the pathological nature of fragility fractures, leading to unwanted side effects, implant ...


Biological Scaffolds For Peripheral Vascular Surgery, George Fercana Dec 2013

Biological Scaffolds For Peripheral Vascular Surgery, George Fercana

All Dissertations

The gold standards for small diameter peripheral vascular graft replacement are autologous arteries or veins; however, one-third of patients lack such vessels due to previous vessel harvesting or advanced vascular disease. A promising approach for patients in this category is tissue engineering with off-the-shelf biological vascular grafts. Three small diameter acellular scaffolds were developed and evaluated as vascular grafts. Porcine renal arteries (2-3 mm diameter, 20 mm length) were decellularized by immersion and stabilized with penta-galloyl glucose (PGG) with and without subsequent heparinization via carbodiimide chemistry. Bovine mammary (4-6 mm ID, 250 mm length) and femoral arteries (6-8 mm ID ...


Engineering Beta-Cell Spheroids For Type 1 Diabetes Treatment, Xiaoyan Liu Dec 2013

Engineering Beta-Cell Spheroids For Type 1 Diabetes Treatment, Xiaoyan Liu

All Dissertations

Diabetes mellitus, the third most common disease in the world, is a chronic metabolic disorder caused by a failure of insulin production and/or an inability to respond to insulin. Specifically, type 1 diabetes is a disorder characterized by targeted autoimmune-directed destruction of a patient's beta-cell population within the pancreatic islets of Langerhans. The current primary treatment for type 1 diabetes is daily multiple insulin injections. However, this treatment cannot provide sustained physiological release, and the insulin amount is not finely tuned to glycemia. Pancreatic transplants or islet transplants would be the preferred treatment method but the lack of ...


Ion Channel-Mediated Hydrostatic Pressure Mechanotransduction In Urothelial Cells, Kevin Champaigne Aug 2013

Ion Channel-Mediated Hydrostatic Pressure Mechanotransduction In Urothelial Cells, Kevin Champaigne

All Dissertations

A majority of men and women aged 40 and over experience lower urinary tract symptoms, including urgency, incontinence, and frequency, which often affect the individual's quality of life. Although often considered a simple structure, the bladder is a complex system with sophisticated sensory and motor feedback mechanisms that allow for the sensation of fullness and pain, reflexive responses to bladder filling, and conscious control over the time and place of micturition. Although disruptions of these sensory mechanisms are believed to cause certain lower urinary tract dysfunctions, the specific mechanisms involved in sensing bladder fullness, distension, tension, or pressure at ...


Spatial Control Of Magnetic Nanoparticles Integrated With Cellular Spheroids As Tissue Engineered Building Blocks, Brandon Mattix Aug 2013

Spatial Control Of Magnetic Nanoparticles Integrated With Cellular Spheroids As Tissue Engineered Building Blocks, Brandon Mattix

All Dissertations

Magnetic nanoparticles (MNPs) have been investigated in tissue engineering applications to provide in situ imaging, drug delivery, and tissue patterning, but direct and prolonged interaction between cells and MNPs can have adverse effects on cell function. Therefore, methods which reduce or limit the interaction of MNPs with cells, or utilize more biocompatible MNP-based strategies will improve upon the commonly used iron oxide MNPs. We investigated a variety of methods to improve upon the use of MNPS in tissue engineering.
Cell aggregates, or spheroids, have been used as tissue engineered building blocks that can closely mimic the native three-dimensional in vivo ...


A Novel Hybrid Hydrogel For Scaffold-Mediated Gene Delivery, Jeremy Zhang Aug 2013

A Novel Hybrid Hydrogel For Scaffold-Mediated Gene Delivery, Jeremy Zhang

All Dissertations

Scaffold-mediated nonviral gene delivery avoids several drawbacks of systemic injection such as clearance by the reticulo-endothelial system and serum aggregation. Existing synthetic and natural polymers used in gene delivery scaffolds are primarily derived from other tissue engineering applications with design parameters focused on the physicochemical properties of the scaffold and its biocompatibility. Common synthetic materials used in polymeric scaffolds such as PEG are practically bio-inert with minimal cell and protein interaction. Therefore, an opportunity exists for the rational design novel gene delivery scaffolds with components capable of increasing the expression of incorporated transgene by including scaffold components that interact with ...


Implantable Biosensors For Physiologic Status Monitoring During Hemorrhage, Christian Kotanen Aug 2013

Implantable Biosensors For Physiologic Status Monitoring During Hemorrhage, Christian Kotanen

All Dissertations

Trauma diagnostics and management are major aims of research for implantable amperometric enzyme biosensor technology. Biosensors are capable of monitoring metabolic variables in a minimally invasive manner and have great potential to augment current wireless vital sign monitoring technologies in order to make a more robust physiologic status monitoring platform. The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037) is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Hyperglycemia arising from insulin resistance and hyperlactatemia arising from anaerobic metabolism both occur following trauma and ...


Feeling For Failure: Haptic Force Perception Of Soft Tissue Constraints In A Simulated Minimally Invasive Surgery Task, Lindsay Long Aug 2013

Feeling For Failure: Haptic Force Perception Of Soft Tissue Constraints In A Simulated Minimally Invasive Surgery Task, Lindsay Long

All Dissertations

In minimally invasive surgery (MIS), the ability to accurately interpret haptic information and apply appropriate force magnitudes onto soft tissue is critical for minimizing bodily trauma. Force perception in MIS is a dynamic process in which the surgeon's administration of force onto tissue results in useful perceptual information which guides further haptic interaction and it is hypothesized that the compliant nature of soft tissue during force application provides biomechanical information denoting tissue failure. Specifically, the perceptual relationship between applied force and material deformation rate specifies the distance remaining until structural capacity will fail, or indicates Distance-to-Break (DTB). Two experiments ...


Biofabrication Of Scaffolds For Intervertebral Disc (Ivd) Tissue Regeneration, Benjamin Whatley Aug 2013

Biofabrication Of Scaffolds For Intervertebral Disc (Ivd) Tissue Regeneration, Benjamin Whatley

All Dissertations

The ultimate goal of tissue regeneration is to replace damaged or diseased tissue with a cell-based or biomaterial-based tissue that accurately mimics the functionality, biology, mechanics, and cellular and extracellular matrix (ECM) composition of the native tissue. Specifically, the ability to control the architecture of tissue engineered constructs plays a vital role in all of these issues as scaffold architecture has an affect on function, biomechanics, and cellular behavior. Many tissue engineered scaffolds focus on the ability to mimic natural tissue by simulating the ECM due to the fact that in each distinct tissue, the ECM serves as a structural ...


Engineering A Biomimetic Structure For Human Long Bone Regeneration, Eleni Katsanevakis May 2013

Engineering A Biomimetic Structure For Human Long Bone Regeneration, Eleni Katsanevakis

All Dissertations

Bone tissue serves many functions, including structural support, protection of internal organs, and mineral and growth factor storage, to name a few. Moreover, human bone exhibits excellent mechanical properties, demonstrating superb compressive strength as well as significant elasticity, due to its collagen content. However, defects still occur at a relatively high rate in this tissue. Critical sized defects in bone are defined as defects that cannot form a union and heal on their own. These types of defects occur often, and typically require surgical intervention. The current gold standard treatment for critical sized defects in bone is the use of ...


Multifunctional Nanophosphors For Tissue Imaging And Drug Delivery, Hongyu Chen May 2013

Multifunctional Nanophosphors For Tissue Imaging And Drug Delivery, Hongyu Chen

All Dissertations

X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray's biomedical applications to functional as well as structural imaging. However, traditional X-ray imaging provides high spatial resolution imaging through tissue but do not measure chemical concentrations. In this dissertation, we describe an X-ray excited optical luminescence (XEOL) technique which uses a scanning X-ray beam to irradiate Gd2O2S phosphors and detect the resulting visible ...


Highly Sensitive Fiber-Based Devices For Gene And Protein Analysis, Victor Maximov May 2013

Highly Sensitive Fiber-Based Devices For Gene And Protein Analysis, Victor Maximov

All Dissertations

Single cell probing has found a number of applications in different areas of research. It can help us to better understand cell-to-cell interactions; it has found numerous applications in immunology, cancer research, detection of pathogenic infections and genetic abnormalities. The single cell analysis is very important in stem cells research and development of cells. The main obstacle in the single cell analysis is the small amount of analyte that a single cell could provide. Another difficulty is connected to the cell-to-cell variability inside the uniform population due to the differences of single cells in size, activity, mitotic stage, and functions ...


Sustained Release Of Estrogens From Pegylated Nanoparticles For Treatment Of Secondary Spinal Cord Injury, John Barry May 2013

Sustained Release Of Estrogens From Pegylated Nanoparticles For Treatment Of Secondary Spinal Cord Injury, John Barry

All Dissertations

Spinal Cord Injury (SCI) is a debilitating condition which causes neurological damage and can result in paralysis. SCI results in immediate mechanical damage to the spinal cord, but secondary injuries due to inflammation, oxidative damage, and activated biochemical pathways leading to apoptosis exacerbate the injury. The only currently available treatment, methylprednisolone, is controversial because there is no convincing data to support its therapeutic efficacy for SCI treatment. In the absence of an effective SCI treatment option, 17β-estradiol has gained significant attention for its anti-oxidant, anti-inflammatory, and anti-apoptotic abilities, all events associated with secondary. Sadly, 17β-estradiol is associated with systemic adverse ...


Develop Novel Frap Techniques For Determining Anisotropic Solute Diffusion In Cartilaginous Tissues, Changcheng Shi Dec 2012

Develop Novel Frap Techniques For Determining Anisotropic Solute Diffusion In Cartilaginous Tissues, Changcheng Shi

All Dissertations

Cartilaginous tissue is a connective tissue composed of specialized cells (e.g., chondrocytes and fibroblasts) that produce a large amount of extracellular matrix (ECM), which is comprised mostly of collagen fibers, abundant ground substance rich in proteoglycan, and elastic fibers. It is characterized by its avascular structures within the tissue, implying that nutrition for normal tissue cells, for maintaining a healthy ECM, is mainly supplied through diffusion from nearby vascularized tissues and synovial fluid. Poor nutritional supply to the cartilaginous tissue is believed to be an important factor leading to tissue degeneration. Moreover, due to the complex collagen fiber structures ...


Induced Elastic Matrix Synthesis Within 3-Dimensional Collagen Constructs, Lavanya Venkataraman Dec 2012

Induced Elastic Matrix Synthesis Within 3-Dimensional Collagen Constructs, Lavanya Venkataraman

All Dissertations

Elastin, a primary component of elastic arteries, maintains structural stability of the cyclically recoiling artery, and critically regulates vascular cell behavior. Accelerated degradation of elastic matrix, such as that seen in vascular pathologies like abdominal aortic aneurysms (AAA), can therefore severely compromise vessel homeostasis. Tissue engineering and in-situ matrix repair strategies evaluated so far are primarily limited in inducing adult vascular cells to replicate the complex elastic matrix assembly process, and restore lost matrix integrity. Previously, our lab established the elastogenic benefits of concurrent delivery of TGF-β1 and HA-oligomers (together termed elastogenic factors, EFs), within 2D cultures of rat aortic ...


Investigating The Role Of Mechanosensitive Ion Channels In Urothelial Cell Pressure Mechanotransduction, Shawn Olsen Aug 2012

Investigating The Role Of Mechanosensitive Ion Channels In Urothelial Cell Pressure Mechanotransduction, Shawn Olsen

All Dissertations

Overactive bladder (OAB) is a bladder disorder that is characterized by bladder storage symptoms of urgency with or without urge incontinence, frequency, nocturia, and, as of 2003, affected approximately 16.5% of adults in the United States with an annual treatment cost of over $65 billion. While therapies are available to mitigate the symptoms of OAB, there are no treatments for the cause of OAB, due to the lack of understanding of the etiology of the disorder. Recent research has provided evidence that the bladder urothelium is not just a passive barrier, but is also sensitive to various chemical and ...


A Novel Haptic Simulator For Evaluating And Training Salient Force-Based Skills For Laparoscopic Surgery, Ravikiran Singapogu Aug 2012

A Novel Haptic Simulator For Evaluating And Training Salient Force-Based Skills For Laparoscopic Surgery, Ravikiran Singapogu

All Dissertations

Laparoscopic surgery has evolved from an 'alternative' surgical technique to currently being considered as a mainstream surgical technique. However, learning this complex technique holds unique challenges to novice surgeons due to their 'distance' from the surgical site. One of the main challenges in acquiring laparoscopic skills is the acquisition of force-based or haptic skills. The neglect of popular training methods (e.g., the Fundamentals of Laparoscopic Surgery, i.e. FLS, curriculum) in addressing this aspect of skills training has led many medical skills professionals to research new, efficient methods for haptic skills training.
The overarching goal of this research was ...


Assembly And Disassembly Of Myofibrils In Dissociated Cardiomyocytes, Honghai Liu May 2012

Assembly And Disassembly Of Myofibrils In Dissociated Cardiomyocytes, Honghai Liu

All Dissertations

Significance
1) We have developed a hybrid TPEF-SHG imaging system with an onstage incubator for long-term living-cell imaging. Using the imaging system, the assembly of myosin filaments onto the myofibrils can be investigated without fluorescently labeling the specific proteins, which enabled us to study the dynamic process of the assembly and dedifferentiation of myofibrils in living cardiomyocytes without labeling any sarcomeric proteins for long time.
2) We observed the addition of new sarcomeres during myofibrillogenesis while neonatal cardiomyocytes were spreading on the substrate for up to 10 hours under the customized TPEF-SHG imaging system. New-sarcomere addition at both the ends ...


Surface Damage In Retrieved Total Knee Replacement Femoral Components, Estefania Alvarez May 2012

Surface Damage In Retrieved Total Knee Replacement Femoral Components, Estefania Alvarez

All Dissertations

The metallic femoral components of total knee replacements are subject to in vivo surface damage and roughening that can severely limit the service lifetime of the bearing system. To date, there are no national standards by which to characterize the severity and damage modes of these critical bearing surfaces, and therefore it remains difficult to accurately assess how femoral damage influences total joint replacement bearing longevity. In vitro and in vivo studies have shown that severe surface damage of the femoral component can occur, however, there is still no defined test methodology that can identify or replicate the types of ...


Nanopillar Based Electrochemical Biosensor For Monitoring Microfluidic Based Cell Culture, Rajan Gangadharan May 2012

Nanopillar Based Electrochemical Biosensor For Monitoring Microfluidic Based Cell Culture, Rajan Gangadharan

All Dissertations

In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events.
With this motivation we developed a highly sensitive, selective and stable microfluidic ...


Quantitative, Spatial Imaging Based Measurements To Assess Cellular Health And Oxygenation In A Tissue Engineered Test System, Erik Bland May 2012

Quantitative, Spatial Imaging Based Measurements To Assess Cellular Health And Oxygenation In A Tissue Engineered Test System, Erik Bland

All Dissertations

Three-dimensional in vitro tissue test systems are employed to examine cell behavior, test responses to drugs and vaccines, and answer basic biological questions. These systems are more physiologically relevant than two-dimensional cell cultures, and are more relevant, easier and less expensive to maintain than animal models. However, methods used to measure cell behavior and viability have been developed specifically for two-dimensional cell cultures or animal models, and are often not optimally translated to three-dimensional in vitro test systems. The purpose of this work was to aid in the development of three-dimensional, spatially controlled in vitro test systems, and to develop ...


Evaluation Of A Bisphosphonate Enriched Ultra-High Molecular Weight Polyethylene For Enhanced Total Joint Replacement Bearing Surface Functionality, Cassandra Wright-Walker May 2012

Evaluation Of A Bisphosphonate Enriched Ultra-High Molecular Weight Polyethylene For Enhanced Total Joint Replacement Bearing Surface Functionality, Cassandra Wright-Walker

All Dissertations

Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material ...