Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 96

Full-Text Articles in Biomedical Engineering and Bioengineering

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler Mar 2019

Development Of A Myoelectric Detection Circuit Platform For Computer Interface Applications, Nickolas Andrew Butler

Master's Theses and Project Reports

Personal computers and portable electronics continue to rapidly advance and integrate into our lives as tools that facilitate efficient communication and interaction with the outside world. Now with a multitude of different devices available, personal computers are accessible to a wider audience than ever before. To continue to expand and reach new users, novel user interface technologies have been developed, such as touch input and gyroscopic motion, in which enhanced control fidelity can be achieved. For users with limited-to-no use of their hands, or for those who seek additional means to intuitively use and command a computer, novel sensory systems ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Overview Of Sepsis And Sepsis Biomarker Detection, Souvik Kundu Jan 2019

Overview Of Sepsis And Sepsis Biomarker Detection, Souvik Kundu

Creative Components

Sepsis being a fatal physiological state due to an imbalance in the immune system caused by infection, and one of the most common cause for millions of deaths in the non-coronary intensive care unit worldwide requires special attention in its diagnostic methods and cure. Therefore an understanding of literature related to sepsis is of utmost importance. With the advent of inter-disciplinary research, the study and diagnosis of sepsis problem are not limited to the medical field, rather it requires interventions and active participation of other fields of science and technology. However, often subject matter from interdisciplinary research is expounded in ...


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network ...


Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage Dec 2018

Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage

Electronic Theses and Dissertations

The use of neural prostheses to improve health of paraplegics has been a prime interest of neuroscientists over the last few decades. Scientists have performed experiments with spinal cord stimulation (SCS) to enable voluntary motor function of paralyzed patients. However, the experimentation on the human spinal cord is not a trivial task. Therefore, modeling and simulation techniques play a significant role in understanding the underlying concepts and mechanics of the spinal cord stimulation. In this work, simulation and modeling techniques related to spinal cord stimulation were investigated. The initial work was intended to visualize the electric field distribution patterns in ...


A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman Sep 2018

A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman

Electronic Thesis and Dissertation Repository

A lack of adherence to prescribed physical therapy regimens in improper healing results in poor outcomes for those affected by musculoskeletal disorders (MSDs) of the upper limb. Societal and psychological barriers to proper adherence can be addressed through the system presented in this work consisting of the following components: an ambulatory biosignal acquisition sleeve, an electromyography (EMG) based motion repetition detection algorithm, and the design of a compatible capacitive EMG acquisition module.

The biosignal acquisition sleeve was untethered, unobtrusive to motion, contained only modular components, and collected biomechanical and physiological sensor data to form full motion profiles of the following ...


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses and Project Reports

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were ...


Development Of Image-Based Surgical Planning Software For Bone-Conduction Implants, Carlos D. Salgado Aug 2018

Development Of Image-Based Surgical Planning Software For Bone-Conduction Implants, Carlos D. Salgado

Electronic Thesis and Dissertation Repository

The BONEBRIDGE bone-conduction device is used to treat conductive and mixed hearing losses. The size of its floating mass transducer (FMT) can preclude implantation in certain anatomies, necessitating comprehensive surgical planning. Current techniques are time consuming and difficult to transfer to the operating room. The objective of this thesis was to develop software for calculating skull thickness to the dura mater to find locations for the FMT and to the first air cells which guarantee sufficient bone for the implant screws to grasp. Temporal bone computed tomography (CT) images were segmented and processed and custom Matlab code was written to ...


Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi Jul 2018

Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi

Biomedical Engineering Theses & Dissertations

Stem cells are a cell type present during and following development, which possess self- renewal properties, as well as the ability to differentiate into specific cells. Asymmetrical division is the cellular process that allows stem cells to produce one differentiated and one un-differentiated daughter cell during the same mitotic event. Insights in the molecular mechanisms of such process are minimal, due to the absence of effective methods for its targeted study. Currently, traditional methods of investigation include monolayer cell culture and animal models. The first poses structural limitations to the accurate representation of human tissue and cell structures, while animal ...


New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney Jun 2018

New Algorithms For Compressed Sensing Of Mri: Wtwts, Dwts, Wdwts, Srivarna Settisara Janney

Master of Science in Computer Science Theses

Magnetic resonance imaging (MRI) is one of the most accurate imaging techniques that can be used to detect several diseases, where other imaging methodologies fail. MRI data takes a longer time to capture. This is a pain taking process for the patients to remain still while the data is being captured. This is also hard for the doctor as well because if the images are not captured correctly then it will lead to wrong diagnoses of illness that might put the patients lives in danger. Since long scanning time is one of most serious drawback of the MRI modality, reducing ...


Extended-Use Ecg Monitor, Daniel Aaron Soski Jun 2018

Extended-Use Ecg Monitor, Daniel Aaron Soski

Master's Theses and Project Reports

In this thesis, a prototype ECG monitor was developed that is integrated into an elastic shirt and takes a 3-lead ECG for over 5 days. The high-quality measurements can be used to identify markers indicative of various detrimental heart conditions. Measurements recorded by the device are encrypted and stored onto a micro-SD card. Current Holter monitors are expensive and have functional lives less than 48 hours; however, extended duration monitoring has been proven more useful in diagnosis. The device designed demonstrates that ECG measurements can be taken over longer durations without sacrificing quality, comfort, or device cost.


Computational Theories For Human Stereo Vision, Han Gao May 2018

Computational Theories For Human Stereo Vision, Han Gao

Electrical Engineering Theses and Dissertations

Binocular stereopsis refers to the ability to perceive depth, which has always been a central problem in perception since the time of da Vinci. The foremost theoretical difficulty that arises when attempting to understand how the visual system computes disparity is known as the correspondence or matching problem. Decades of research upon macaque primary visual cortex has shown that in each layer of the primary visual cortex (V1) long-range horizontal connections among striate cortex cells exist which integrate information from different parts of the visual field. Inspired by long-range horizontal connections in V1 and the Jeffress model, a time-delay neural ...


Design & Delivery Of Automated Winston-Lutz Test For Isocentric & Off-Axis Delivery Stability Utilizing Truebeam Developer Mode & Electronic Portal Imaging Device, Mahmoud Mohammad Yaqoub May 2018

Design & Delivery Of Automated Winston-Lutz Test For Isocentric & Off-Axis Delivery Stability Utilizing Truebeam Developer Mode & Electronic Portal Imaging Device, Mahmoud Mohammad Yaqoub

UNLV Theses, Dissertations, Professional Papers, and Capstones

The uncertainties in treatment delivery cannot be ignored in radiation therapy. Thus, the quality assurance QA tests are very important task of the medical physicist in clinical practice. Assuring the coincidence between the mechanical isocenter of the Linear Accelerator (LINAC) and its radiation beams isocenter is one of the most important qualities need to be tested, and the Winston Lust (WL) test is the

most popular technique to perform this task, especially for the treatment modalities which need high precision in beam delivery such as the stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT). The linear accelerator-based SRS/SBRT is a ...


Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard May 2018

Longitudinal Tracking Of Physiological State With Electromyographic Signals., Robert Warren Stallard

Electronic Theses and Dissertations

Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small ...


3d Bioprinting Systems For The Study Of Mammary Development And Tumorigenesis, John Reid Apr 2018

3d Bioprinting Systems For The Study Of Mammary Development And Tumorigenesis, John Reid

Electrical & Computer Engineering Theses & Disssertations

Understanding the microenvironmental factors that control cell function, differentiation, and stem cell renewal represent the forefront of developmental and cancer biology. To accurately recreate and model these dynamic interactions in vitro requires both precision-controlled deposition of multiple cell types and well-defined three-dimensional (3D) extracellular matrix (ECM). To achieve this goal, we hypothesized that accessible bioprinting technology would eliminate the experimental inconsistency and random cell-organoid formation associated with manual cell-matrix embedding techniques commonly used for 3D, in vitro cell cultures. The first objective of this study was to adapt a commercially-available, 3D printer into a 3D bioprinter. Goal-based computer simulations were ...


Augmented Reality Ultrasound Guidance In Anesthesiology, Golafsoun Ameri Feb 2018

Augmented Reality Ultrasound Guidance In Anesthesiology, Golafsoun Ameri

Electronic Thesis and Dissertation Repository

Real-time ultrasound has become a mainstay in many image-guided interventions and increasingly popular in several percutaneous procedures in anesthesiology. One of the main constraints of ultrasound-guided needle interventions is identifying and distinguishing the needle tip from needle shaft in the image. Augmented reality (AR) environments have been employed to address challenges surrounding surgical tool visualization, navigation, and positioning in many image-guided interventions. The motivation behind this work was to explore the feasibility and utility of such visualization techniques in anesthesiology to address some of the specific limitations of ultrasound-guided needle interventions. This thesis brings together the goals, guidelines, and best ...


Eeg And Emg Sensorimotor Measurements To Assess Proprioception Following Acl Reconstruction, Teagan Frances Northrup Jan 2018

Eeg And Emg Sensorimotor Measurements To Assess Proprioception Following Acl Reconstruction, Teagan Frances Northrup

Honors Theses and Capstones

The Anterior Cruciate Ligament (ACL) is the primary source of rotational stability in the knee by preventing the tibia from sliding in front of the femur. When the ACL is torn, it typically must be repaired through reconstructive surgery which results in proprioceptive deficiencies in the knee. Proprioception plays an important role in understanding where one’s knee is in space, sensing movement and reacting accordingly. This study examines an alternative method of measuring proprioceptive responses to a stimulus (motion) by using electromyogram (EMG) and electroencephalogram (EEG) signals to observe muscle and brain activity. Two participants (one with an ACL ...


Power Mobility Sensor Data Collection Verified Through Standardized Pediatric Assessments, Ayshka Elise Rodriguez-Velez Jan 2018

Power Mobility Sensor Data Collection Verified Through Standardized Pediatric Assessments, Ayshka Elise Rodriguez-Velez

UNF Graduate Theses and Dissertations

The collaboration between the School of Engineering and the Department of Physical Therapy at the University of North Florida has introduced the possibility of creating a new environment for pediatric physical therapy assessments. There are currently no methods for remotely monitoring children with impairments. However, with embedded sensor technology in the form of power mobility and accepted therapy assessment tools, remote monitoring can become a possibility. As a part of this work, a ride-on toy car was developed as a remote monitoring device and a case study with a child with a mobility impairment was used as a proof of ...


Interactive Clinical Event Pattern Mining And Visualization Using Insurance Claims Data, Zhenhui Piao Jan 2018

Interactive Clinical Event Pattern Mining And Visualization Using Insurance Claims Data, Zhenhui Piao

Theses and Dissertations--Computer Science

With exponential growth on a daily basis, there is potentially valuable information hidden in complex electronic medical records (EMR) systems. In this thesis, several efficient data mining algorithms were explored to discover hidden knowledge in insurance claims data. The first aim was to cluster three levels of information overload(IO) groups among chronic rheumatic disease (CRD) patient groups based on their clinical events extracted from insurance claims data. The second aim was to discover hidden patterns using three renowned pattern mining algorithms: Apriori, frequent pattern growth(FP-Growth), and sequential pattern discovery using equivalence classes(SPADE). The SPADE algorithm was found ...


Computer-Aided Diagnoses (Cad) System: An Artificial Neural Network Approach To Mri Analysis And Diagnosis Of Alzheimer's Disease (Ad), Berizohar Padilla Cerezo Dec 2017

Computer-Aided Diagnoses (Cad) System: An Artificial Neural Network Approach To Mri Analysis And Diagnosis Of Alzheimer's Disease (Ad), Berizohar Padilla Cerezo

Master's Theses and Project Reports

Alzheimer’s disease (AD) is a chronic and progressive, irreversible syndrome that deteriorates the cognitive functions. Official death certificates of 2013 reported 84,767 deaths from Alzheimer’s disease, making it the 6th leading cause of death in the United States. The rate of AD is estimated to double by 2050. The neurodegeneration of AD occurs decades before symptoms of dementia are evident. Therefore, having an efficient methodology for the early and proper diagnosis can lead to more effective treatments.

Neuroimaging techniques such as magnetic resonance imaging (MRI) can detect changes in the brain of living subjects. Moreover, medical imaging ...


Design And Evaluation Of Neurosurgical Training Simulator, Trinette L. Wright Nov 2017

Design And Evaluation Of Neurosurgical Training Simulator, Trinette L. Wright

Electronic Thesis and Dissertation Repository

Surgical simulators are becoming more important in surgical training. Consumer smartphone technology has improved to allow deployment of VR applications and are now being targeted for medical training simulators. A surgical simulator has been designed using a smartphone, Google cardboard 3D glasses, and the Leap Motion (LM) hand controller. Two expert and 16 novice users were tasked with completing the same pointing tasks using both the LM and the medical simulator NeuroTouch. The novice users had an accuracy of 0.2717 bits (SD 0.3899) and the experts had an accuracy of 0.0925 bits (SD 0.1210) while using ...


Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu Oct 2017

Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu

LSU Doctoral Dissertations

Lung cancer is the leading cancer type that causes the mortality in both men and women. Computer aided detection (CAD) and diagnosis systems can play a very important role for helping the physicians in cancer treatments. This dissertation proposes a CAD framework that utilizes a hierarchical fusion based deep learning model for detection of nodules from the stacks of 2D images. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest (VOI). This study explores three different ...


Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp Aug 2017

Force Sensing Surgical Grasper With Folding Capacitive Sensor, Dave Bp Tripp

Electronic Thesis and Dissertation Repository

Minimally-invasive surgery (MIS) has brought many benefits to the operating room, however, MIS procedures result in an absence of force feedback, and surgeons cannot as accurately feel the tissue they are working on, or the forces that they are applying. One of the barriers to introducing MIS instruments with force feedback systems is the high cost of manufacturing and assembly. Instruments must also be sterilized before every use, a process that can destroy embedded sensing systems. An instrument that can be disposed of after a single use and produced in bulk at a low cost is desirable. Printed circuit micro-electro-mechanical ...


Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris Aug 2017

Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris

UNLV Theses, Dissertations, Professional Papers, and Capstones

It has been demonstrated that although many varieties of upper limb prosthetics exist, commercially available prosthetics are outdated and unsatisfactory. Ineffectiveness and limitations have led to some prosthesis wearers having to own multiple devices, whereas others have given up on them entirely. Even though ample research has been conducted to design and test new hand designs, the industry appears to rest in an overall stagnated state.

It was proposed here, that one problem with prosthetic research is an excess of variables involved in testing, and therefore the improper application of the scientific method. It seems that each time a research ...


Poly Drop, Zachary T. Scott, Lilly J. Paul Jun 2017

Poly Drop, Zachary T. Scott, Lilly J. Paul

Computer Engineering

Poly Drop is a software interface to control an Open Drop digital micro-fluidics system. We obtained a hardware system from Gaudi labs. Our task was to create a Graphical User Interface that made the control of the device easier and more automated for better testing. We created software that had 3 parts: a control GUI, arduino code to control the hardware, and Image Analysis that gives the user information such as location and color of liquid drops as they move across the electrode grid of the Open Drop system. The GUI was developed using Java Swing. The communication between the ...


Design Of Radio-Frequency Arrays For Ultra-High Field Mri, Ian R O Connell Jan 2017

Design Of Radio-Frequency Arrays For Ultra-High Field Mri, Ian R O Connell

Electronic Thesis and Dissertation Repository

Magnetic Resonance Imaging (MRI) is an indispensable, non-invasive diagnostic tool for the assessment of disease and function. As an investigational device, MRI has found routine use in both basic science research and medicine for both human and non-human subjects.

Due to the potential increase in spatial resolution, signal-to-noise ratio (SNR), and the ability to exploit novel tissue contrasts, the main magnetic field strength of human MRI scanners has steadily increased since inception. Beginning in the early 1980’s, 0.15 T human MRI scanners have steadily risen in main magnetic field strength with ultra-high field (UHF) 8 T MRI systems ...


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jan 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of ...


Implantable Wireless Sensor Networks: Application To Measuring Temperature For In Vivo Detection Of Infections, Praharsh Madappaly Veetil Jan 2017

Implantable Wireless Sensor Networks: Application To Measuring Temperature For In Vivo Detection Of Infections, Praharsh Madappaly Veetil

Dissertations, Master's Theses and Master's Reports

It is has been proven that infection in the body cause a local temperature increase due to localized inflammation. Therefore, a method to provide early diagnostic or long-term tracking of this infection will provide great benefits to patients with diabetic foot ulcers or sickle cell disease, and those receiving hemodialysis where they suffer from a weakened immune system. The goal of this project is to develop an implantable wireless temperature sensor based on a wireless sensor network system for monitoring infections in situ. The analog signals from the thermistors are digitized and wirelessly transmitted to a computer with an ez430-rf2500 ...


A Wireless, Passive Sensor For Measuring Temperature At Orthopedic Implant Sites For Early Diagnosis Of Infections, Salil Sidharthan Karipott Jan 2017

A Wireless, Passive Sensor For Measuring Temperature At Orthopedic Implant Sites For Early Diagnosis Of Infections, Salil Sidharthan Karipott

Dissertations, Master's Theses and Master's Reports

Sensorized implants with embedded wireless, passive temperature sensors were developed for early detection of implant-associated infections. The operation principle of the sensor is based on the hypothesis that infections can lead to an increase in local temperature prior to the rise of body temperature. The sensor was an inductive capacitive (LC) circuit that has been used for monitoring of different parameters wirelessly, often in difficult to access environments. The sensor was fabricated on to an interference screw, which is used for tendon and ligament reconstruction surgeries. In this project, a sensorized interference screw was designed and fabricated by accommodating an ...