Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Bioimaging and Biomedical Optics

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 220

Full-Text Articles in Biomedical Engineering and Bioengineering

Simulation Approaches To X-Ray C-Arm-Based Interventions, Daniel R. Allen Aug 2020

Simulation Approaches To X-Ray C-Arm-Based Interventions, Daniel R. Allen

Electronic Thesis and Dissertation Repository

Mobile C-Arm systems have enabled interventional spine procedures, such as facet joint injections, to be performed minimally-invasively under X-ray or fluoroscopy guidance. The downside to these procedures is the radiation exposure the patient and medical staff are subject to, which can vary greatly depending on the procedure as well as the skill and experience of the team. Standard training methods for these procedures involve the use of a physical C-Arm with real X-rays training on either cadavers or via an apprenticeship-based program. Many guidance systems have been proposed in the literature which aim to reduce the amount of radiation exposure ...


A 3d Printed Axon-Mimetic Diffusion Mri Phantom, Tristan K. Kuehn Aug 2020

A 3d Printed Axon-Mimetic Diffusion Mri Phantom, Tristan K. Kuehn

Electronic Thesis and Dissertation Repository

Diffusion MRI is used to non-invasively characterize the microstructure of the brain. However, the accuracy of the characterization is difficult to verify because no other non-invasive imaging modality provides the same information. This thesis presents a novel 3D printed axon-mimetic (3AM) diffusion MRI phantom, a synthetic object designed to mimic the brain's microstructure.

The phantoms were characterized using microscopy, synchrotron micro-computed tomography, and diffusion MRI, and found to have sufficiently axon-mimetic properties to be useful as diffusion MRI phantoms. A set of phantoms designed to have anatomically realistic and complex fibre structures was used to test the response of ...


Model-Based Approach For Diffuse Glioma Classification, Grading, And Patient Survival Prediction, Zeina A. Shboul Aug 2020

Model-Based Approach For Diffuse Glioma Classification, Grading, And Patient Survival Prediction, Zeina A. Shboul

Electrical & Computer Engineering Theses & Disssertations

The work in this dissertation proposes model-based approaches for molecular mutations classification of gliomas, grading based on radiomics features and genomics, and prediction of diffuse gliomas clinical outcome in overall patient survival. Diffuse gliomas are types of Central Nervous System (CNS) brain tumors that account for 25.5% of primary brain and CNS tumors and originate from the supportive glial cells. In the 2016 World Health Organization’s (WHO) criteria for CNS brain tumor, a major reclassification of the diffuse gliomas is presented based on gliomas molecular mutations and the growth behavior. Currently, the status of molecular mutations is determined ...


Active Deep Learning Method To Automate Unbiased Stereology Cell Counting, Saeed Alahmari Jun 2020

Active Deep Learning Method To Automate Unbiased Stereology Cell Counting, Saeed Alahmari

Graduate Theses and Dissertations

Cell quantification in histopathology images plays a significant role in understanding and diagnosing diseases such as cancer and Alzheimers. The gold-standard for quantifying cells in tissue sections is the unbiased stereology approach. Unfortunately, in unbiased stereology current practices rely on a well-trained human to manually count hundreds of cells in microscopy images. However, this human-based manual approach is time-consuming, labor-intensive, subject to human errors, recognition bias, fatigue, variable training, poor reproducibility, and inter-observer error. Thus, the lack of high-throughput technology for automating unbiased stereology analyses remains a major obstacle to further progress in a wide range of neuroscience and cancer ...


Detecting Command-Driven Brain Activity In Patients With Disorders Of Consciousness Using Tr-Fnirs, Androu Abdalmalak Jun 2020

Detecting Command-Driven Brain Activity In Patients With Disorders Of Consciousness Using Tr-Fnirs, Androu Abdalmalak

Electronic Thesis and Dissertation Repository

Vegetative state (VS) is a disorder of consciousness often referred to as “wakefulness without awareness”. Patients in this condition experience normal sleep-wake cycles, but lack all awareness of themselves and their surroundings. Clinically, assessing consciousness relies on behavioural tests to determine a patient’s ability to follow commands. This subjective approach often leads to a high rate of misdiagnosis (~40%) where patients who retain residual awareness are misdiagnosed as being in a VS. Recently, functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), has allowed researchers to use command-driven brain activity to infer consciousness. Although promising, the cost and ...


Investigation Of Experimental Variation Of Bovine Sphingomyelin As A Novel Ingredient For Ultraviolet Protection, Esther Chen Jun 2020

Investigation Of Experimental Variation Of Bovine Sphingomyelin As A Novel Ingredient For Ultraviolet Protection, Esther Chen

Master's Theses

Skin cancer is a prevalent disease that globally affects 2-3 million people per year [1]. This number is expected to grow tenfold as depletion of the ozone layer contributes to harsher rays reaching Earth’s surface [2]. A common way to protect against those ultraviolet waves is to apply sunscreen, however, recent reports call into question the safety of some active ingredients as they can enter through the skin into the bloodstream [3]. This thesis aims to investigate an alternative solution that uses bovine sphingomyelin (BSM) as photoprotective solution against UV irradiation.

In order to evaluate the effectiveness of BSM ...


Neurobiological Markers For Remission And Persistence Of Childhood Attention-Deficit/Hyperactivity Disorder, Yuyang Luo May 2020

Neurobiological Markers For Remission And Persistence Of Childhood Attention-Deficit/Hyperactivity Disorder, Yuyang Luo

Dissertations

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in children. Symptoms of childhood ADHD persist into adulthood in around 65% of patients, which elevates the risk for a number of adverse outcomes, resulting in substantial individual and societal burden. A neurodevelopmental double dissociation model is proposed based on existing studies in which the early onset of childhood ADHD is suggested to associate with dysfunctional subcortical structures that remain static throughout the lifetime; while diminution of symptoms over development could link to optimal development of prefrontal cortex. Current existing studies only assess basic measures including regional brain ...


Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang May 2020

Scanless Optical Coherence Tomography For High-Speed 3d Biomedical Microscopy, Yahui Wang

Dissertations

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging modality that has found applications in a wide range of biomedical fields, such as ophthalmology diagnosis, interventional cardiology, surgical guidance, and oncology. OCT can be used to image dynamic scenes, in quantitative blood flow sensing and visualization, dynamic optical coherence elastography, and large-scale neural recording. However, the spatiotemporal resolution of OCT for dynamic imaging is limited by the approach it takes to scan the three-dimensional (3-D) space. In a typical OCT system, the incident light is focused to a point at the sample. The OCT system uses mechanical scanners (galvanometers or ...


Identification Of Neurobiological Mechanisms Associated With Attention Deficits In Adults Post Traumatic Brain Injury, Ziyan Wu May 2020

Identification Of Neurobiological Mechanisms Associated With Attention Deficits In Adults Post Traumatic Brain Injury, Ziyan Wu

Dissertations

Traumatic Brain Injury (TBI) is one of the major public health concerns with approximately 70 million new cases occurring worldwide per year. It is often caused by a forceful bump, blow, or jolt to the head, resulting in brain tissue damage and normal brain functions disruption. All grades of TBI, ranging from mild to severe, can cause wide-ranging and long-term effects on affected individuals, resulting in physical impairments, and neurocognitive consequences that permanently affect their abilities to perform daily activities. Attention deficits are the most common persisting neurocognitive consequences following TBI, which significantly contribute to poor academic and social functioning ...


Video Processing For The Evaluation Of Vascular Dynamics In Neurovascular Interventions, Reid Vassallo May 2020

Video Processing For The Evaluation Of Vascular Dynamics In Neurovascular Interventions, Reid Vassallo

Electronic Thesis and Dissertation Repository

An arteriovenous malformation (AVM) is an abnormal collection of blood vessels which causes blood to travel from arteries to veins through an abnormal twisted network of vessels. This network has an elevated risk of rupture, which can lead to permanent disability and death if the rupture occurs in the brain. The gold standard treatment for AVM is surgical resection, and it is crucial to know which vessels are bringing blood towards and away from the AVM. Unfortunately, it is almost impossible to know this by looking at the surgical scene. The primary limitations of current methods to address this are ...


Phantoms To Placentas: Mr Methods For Oxygen Quantification, Kelsey Meinerz May 2020

Phantoms To Placentas: Mr Methods For Oxygen Quantification, Kelsey Meinerz

Arts & Sciences Electronic Theses and Dissertations

Molecular oxygen (O2) is vital for efficient energy production and improper oxygenation is a hallmark of disease or metabolic dysfunction. In many pathologies, knowledge of tissue oxygen levels (pO2) could aid in diagnosis and treatment planning. The gold standard for pO2 measures in tissue are implantable probes, which are invasive, require surgery for placement, and are inaccessible to certain regions of the body. Methods for determining pO2 both non-invasively and quantitatively are lacking. The slight paramagnetic nature of O2 provides opportunities to non-invasively characterize pO2 in tissue via magnetic resonance (MR) techniques. As such, O2 can be treated as a ...


Identification Of Human Adrenal Carcinoma Cells Using Photoacoustic Flow Cytometry, Alexis Stahl May 2020

Identification Of Human Adrenal Carcinoma Cells Using Photoacoustic Flow Cytometry, Alexis Stahl

Electronic Theses and Dissertations

With consistently high mortality rates in patients with adrenal cancer, lack of early detection and diagnosis are an ever increasing problem in fighting the deadly disease. Currently, very few patients are diagnosed with adrenal cancer within the early stages due to the absence of symptoms until large tumors are formed, which is in most cases is fatal. Because of this, early detection equipment is crucial to optimizing the survival rate in patients. We studied the absorbance wavelength of human adrenal carcinoma cells, as well as the minimum cell concentration needed in samples using photoacoustic flow cytometry (PAFC). PAFC generates ultrasonic ...


Pulmonary Imaging Of Chronic Obstructive Pulmonary Disease Using Multi-Parametric Response Maps, Jonathan Macneil Feb 2020

Pulmonary Imaging Of Chronic Obstructive Pulmonary Disease Using Multi-Parametric Response Maps, Jonathan Macneil

Electronic Thesis and Dissertation Repository

Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction caused by airway remodelling and parenchymal destruction. Clinically, observation of COPD is performed using spirometry, but this technique only provides a global measure of lung health. To supplement these clinical measurements, thoracic computed tomography (CT) and hyperpolarized gas magnetic resonance imaging (MRI) have been used to measure regional structure and function abnormalities. Although CT and MRI have been used to research COPD, combination of both modalities into an interrelated image has never been performed. Therefore, we developed an image processing pipeline to combine MRI-CT information into a multi-parametric response ...


Lung Nodule Malignancy Prediction From Computed Tomography Images Using Deep Learning, Rahul Paul Feb 2020

Lung Nodule Malignancy Prediction From Computed Tomography Images Using Deep Learning, Rahul Paul

Graduate Theses and Dissertations

Lung cancer has a high incidence and mortality rate. The five-year relative survival rate for all lung cancers is 18%. Due to the high mortality and incidence rate of lung cancer worldwide, early detection is essential. Low dose Computed Tomography (CT) is a commonly used technique for screening, diagnosis, and prognosis of non-small cell lung cancer (NSCLC). The National Lung Screening Trial (NLST) compared low-dose helical computed tomography (LDCT) and standard chest radiography (CXR) for three annual screens and reported a 20% relative reduction in lung cancer mortality for LDCT compared to CXR. As such, LDCT screening for lung cancer ...


Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker Jan 2020

Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker

Doctoral Dissertations

"The reduction of motion blur in computed tomography (CT) drives the current research for multisource CT. Due to their compact nature, the current multisource systems utilize stationary angled anodes. Unfortunately, these configurations neither simplify the imaging geometry, nor satisfy the need for managing the high thermal loads demanded by real-time CT (30 acquisition frames per second). To add to the current field of knowledge, two x-ray tube concepts are presented in this dissertation. First, a simulation of transient thermal analysis was performed on a compact transmission-type x-ray tube anode operating in pulse-mode. A correlation was found between deposited beam power ...


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to ...


In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill Dec 2019

In Vivo Metabolic And Vascular Response To Hypoxia In Twist Knockdown Murine Breast Cancer, Brandon Sturgill

Theses and Dissertations

Twist transcription factor is often overexpressed in aggressive tumors. Although needed in early embryonic development for organogenesis, Twist is known to induce an epithelial to mesenchymal transition in cells. In cancer, epithelial to mesenchymal transitions can lead to increased motility and invasiveness. It has also been linked to metabolic reprogramming and increased metastatic risk. Furthermore, metabolic preferences can increase proliferation, enhance metastatic potential, and influence the site of metastasis. We hypothesize that Twist directly affects the metabolism of cancer cells. We expect to see in vivo what we have seen in vitro; Twist overexpression should promote a shift away from ...


Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding Aug 2019

Design, Construction And Application Of A Home-Built, Two-Photon Microscope, William P. Breeding

Electronic Theses and Dissertations

Two-photon microscopy (TPM) is a powerful, versatile imaging modality for the study of biological systems. This thesis overviews the relevant physics involved in TPM, design considerations and process of constructing a home-built, two-photon microscope, and provides a set of procedures to operate the system. Furthermore, this work explores several applications of TPM through the study of single-cell metabolism and imaging the cellular-material interface. Explored in particular depth was the imaging of cellulose nanofiber (CNF) materials, with the goal of understanding the three-dimensional nature of fibroblast cell growth when embedded within the materials. This work uncovered several optical properties of CNF ...


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

Engineering and Applied Science Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial

imaging applications. The state-of-the-art methods to reconstruct CT images have had

great development but also face challenges. This dissertation derives novel algorithms to

reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance

in low-dose scenarios.

The most widely available CT systems still use the single-energy CT (SECT), which is

good at showing the anatomic structure of the patient body. However, in SECT image

reconstruction, energy-related information is lost. In applications like radiation treatment

planning and dose prediction, accurate energy-related information ...


Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu Aug 2019

Multi-Dimensional Extension Of The Alternating Minimization Algorithm In X-Ray Computed Tomography, Jingwei Lu

Engineering and Applied Science Theses & Dissertations

X-ray computed tomography (CT) is an important and effective tool in medical and industrial imaging applications. The state-of-the-art methods to reconstruct CT images have had great development but also face challenges. This dissertation derives novel algorithms to reduce bias and metal artifacts in a wide variety of imaging modalities and increase performance in low-dose scenarios. The most widely available CT systems still use the single-energy CT (SECT), which is good at showing the anatomic structure of the patient body. However, in SECT image reconstruction, energy-related information is lost. In applications like radiation treatment planning and dose prediction, accurate energy-related information ...


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further ...


Designing A Low-Cost Ultrasound Pulser, Andrea Huey Jun 2019

Designing A Low-Cost Ultrasound Pulser, Andrea Huey

Honors Theses

Ultrasound imaging allows for those studying living beings to see inside a subject without causing it harm. This allows for real-time images to be taken, leading to ease of observational research. However, while this technology is beneficial to those who utilize it, the devices used to create and receive ultrasound pulses can be incredibly complex, allowing for precise adjustment of the output signal and various other functions, and therefore expensive. The focus of this senior project is the design of a low-cost pulser for use with an ultrasound transducer. While it does not have all the high-level functions of the ...


Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan Jun 2019

Evaluation Of Human Umbilical Vein Endothelial Cells In Blood Vessel Mimics Through Changes In Gene Expression And Caspase Activity, Conor Charles Hedigan

Master's Theses

Blood vessel mimics (BVMs) are simple tissue engineered blood vessel constructs intended for preclinical testing of vascular devices. This thesis developed and implemented methods to characterize two of these components. The first aim of this thesis investigated the effect of cell culture duration and flow conditions on endothelial cell gene expression, especially regarding endothelial-to-mesenchymal transition (EndMT). A trend of decreased endothelial marker gene expression and increased mesenchymal marker gene expression would indicate EndMT. qPCR analysis revealed that increased cell culture duration did not result in EndMT, and in fact increased endothelial marker expression as cell culture duration increased. Disturbed flow ...


Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki May 2019

Dual Modality Optical Coherence Tomography : Technology Development And Biomedical Applications, Farzana Rahmat Zaki

Dissertations

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely used in clinical ophthalmology and interventional cardiology. It is highly promising for in situ characterization of tumor tissues. OCT has high spatial resolution and high imaging speed to assist clinical decision making in real-time.

OCT can be used in both structural imaging and mechanical characterization. Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has limited tissue differentiation capability because of the complex and noisy nature of the OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light scattering properties has little chemical specificity ...


A Multimodal Approach To Investigate Brain Reorganization After Spinal Cord Injury Using Functional Magnetic Resonance Imaging And Functional Near-Infrared Spectroscopy, Keerthana Deepti Karunakaran May 2019

A Multimodal Approach To Investigate Brain Reorganization After Spinal Cord Injury Using Functional Magnetic Resonance Imaging And Functional Near-Infrared Spectroscopy, Keerthana Deepti Karunakaran

Dissertations

Traumatic Spinal Cord Injury (SCI) results in structural and functional neurological changes at both the brain and the level of the spinal cord. Anatomical studies indicate decreased grey matter volume in sensorimotor and non-sensorimotor regions of the cortex following SCI; whereas, neurophysiological findings mostly report altered functional activity in the sensorimotor nodes of the cortex, subcortex, and cerebellum. Therefore, it is currently unknown whether tissue atrophy observed in non-motor related areas has any concomitant functional consequences. Furthermore, the neural underpinnings of adaptive neuroplasticity after SCI is not well-defined in the current literature. Hence, this dissertation is a pioneer study investigating ...


Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening May 2019

Diffuse Reflectance Spectroscopy To Quantify In Vivo Tissue Optical Properties: Applications In Human Epithelium And Subcutaneous Murine Colon Cancer, Gage Joseph Greening

Theses and Dissertations

Colorectal cancer is the 4th most common and 2nd deadliest cancer. Problems exist with predicting which patients will respond best to certain therapy regimens. Diffuse reflectance spectroscopy has been suggested as a candidate to optically monitor a patient’s early response to therapy and has been received favorably in experimentally managing other cancers such as breast and skin. In this dissertation, two diffuse reflectance spectroscopy probes were designed: one with a combined high-resolution microendoscopy modality, and one that was optimized for acquiring data from subcutaneous murine tumors. For both probes, percent errors for estimating tissue optical properties (reduced scattering coefficient ...


Investigation Of Acute Radiation-Induced Changes In Oxygenation In A Murine Breast Tumor Model, Alaa Abdelgawad May 2019

Investigation Of Acute Radiation-Induced Changes In Oxygenation In A Murine Breast Tumor Model, Alaa Abdelgawad

Biomedical Engineering Undergraduate Honors Theses

Around 50-60% of all cancer patients undergo radiation therapy. Although some patients show complete response with no recurrence, a significant proportion of the population still develop radiation resistance. It is important to identify tumor resistance at early stages of therapy in order to adjust treatment protocol and avoid extra exposure to radiation. Current methods to assess treatment response are only limited to anatomical measurements of tumor volume after therapy. Novel approaches that shed the light on any functional information during the course of radiotherapy could significantly improve our ability to identify patients who do not respond to radiation therapy. Diffuse ...


A Structured-Light Surface Scanning System To Evaluate Breast Morphology In Standing And Supine Positions, Olivia Tong Apr 2019

A Structured-Light Surface Scanning System To Evaluate Breast Morphology In Standing And Supine Positions, Olivia Tong

Electronic Thesis and Dissertation Repository

Objective and accurate surface measurements of the human breast are important for surgical planning and outcome assessment. Breast shapes are affected by gravitational loads and deformities, and the measurements obtained in the standing position may not correlate well with measurements in supine position, which is more representative of breast surgery. To evaluate the effect of changes in body posture on breast morphology, a dual color 3D surface imaging system capable of scanning patients in both the supine and standing positions was developed. System performance was established by assessing the surface coverage and accuracy between a CAD breast model and 3D ...


Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski Apr 2019

Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski

Electronic Thesis and Dissertation Repository

Hydrogels contain high amount of water allowing their use as surrogates to human tissues with specific properties that can be tuned by additives. Gellan gum is a gel-forming material of interest and is a replacement for other common gelling agent with limited use as a tissue phantom. Therefore, this thesis examines the application of gellan gum gels as a novel magnetic resonance imaging (MRI) phantom with a design of experiments model to obtain tunable properties. The analysis was extended to include mechanical and electrical properties with a separate design of experiment. Gels doped with synthesized superparamagnetic iron oxide nanoparticles (SPIONs ...


Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman Apr 2019

Vision Beyond Optics: Standardization, Evaluation And Innovation For Fluorescence Microscopy In Life Sciences, Maximiliaan Huisman

GSBS Dissertations and Theses

Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation.

A universal standard makes it easier to assess ...