Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Drug delivery

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 31

Full-Text Articles in Biomedical Engineering and Bioengineering

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in vitro ...


Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak Aug 2018

Development And Evaluation Of Biocompatible Engineered Nanoparticles For Use In Ophthalmology, Bedia Begum Karakocak

Engineering and Applied Science Theses & Dissertations

The synthesis and design of biocompatible nanoparticles for targeted drug delivery and bioimaging requires knowledge of both their potential toxicity and their transport. For both practical and ethical reasons, evaluating exposure via cell studies is a logical precursor to in vivo tests. As a step towards clinical trials, this work extensively investigated the toxicity of gold nanoparticles (Au NPs) and carbon dot (CD) nanoparticles as a prelude to their in vivo application, focusing specifically on ocular cells. As a further step, it also evaluated their whole-body transport in mice. The research pursued two approaches in assessing the toxicity of engineered ...


Thermal Fluid Models Of A Hydrogel Delivery System For Pancreatic Cancer Treatment, Nesrine Bouhrira May 2018

Thermal Fluid Models Of A Hydrogel Delivery System For Pancreatic Cancer Treatment, Nesrine Bouhrira

Theses and Dissertations

Pancreatic cancer is one of the most devastating cancers with low survival rates. This disease is difficult to detect due to the pancreas's location deep within the body. Therefore, diagnoses are often made in the later stages, making treatment options more limited and difficult. It has been hypothesized that direct injection into the tumor would enhance drug effectivenes. Therefore, we examined the use of endoscopic ultrasound (EUS) combined with a fine needle injection to deliver a drug-eluding thermosensitive hydrogel directly into the tumor. Unfortunately normal body temperatures surrounding the EUS can warm the hydrogel drug combination beyond its phase ...


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of ...


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose ...


Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei Jan 2017

Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei

Theses and Dissertations--Biomedical Engineering

Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release.

Simvastatin was first polymerized with a ...


Microbubble Size And Dose Effects On Sonoporation In Vitro And In Vivo, Kang-Ho Song Jan 2016

Microbubble Size And Dose Effects On Sonoporation In Vitro And In Vivo, Kang-Ho Song

Mechanical Engineering Graduate Theses & Dissertations

Microbubbles interact with ultrasound to induce transient microscopic pores in the cellular plasma membrane in a highly localized thermo-mechanical process called sonoporation. The objective of this study was to advance in vitro and in vivo sonoporation through the development of novel devices and methodologies to precisely characterize the effects of microbubble size on suspended cell and blood-brain barrier sonoporation. The three core findings of our study were: 1) microbubble size allows for control over sonoporation power and energy, 2) the previously cited “soft” limit on in vitro sonoporation efficiency can be overcome utilizing sequential, low-energy sonoporation with small-diameter microbubbles, and ...


Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige Jan 2016

Fe3o4 Nanoparticles For Magnetic Hyperthermia And Drug Delivery: Synthesis, Characterization And Cellular Studies, Maheshika Palihawadana Arachchige

Wayne State University Dissertations

In recent years, magnetic nanoparticles (MNPs), especially superparamagnetic Fe3O4nanoparticles, have attracted a great deal of attention because of their potential applications in biomedicine. Among the other applications, Magnetic hyperthermia (MHT), where localized heating is generated by means of relaxation processes in MNPs when subjected to a radio frequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. Specific absorption rate (SAR), which measures the efficiency of heat generation, depends on magnetic properties of the particles such as saturation magnetization (Ms), magnetic anisotropy (K), particle size distribution, magnetic dipolar interactions, and the rheological properties of the target medium ...


Layered, Flexible Drug Delivery Films For The Prevention Of Fibrotic Scar Tissue Formation, Cheryl L. Rabek Jan 2015

Layered, Flexible Drug Delivery Films For The Prevention Of Fibrotic Scar Tissue Formation, Cheryl L. Rabek

Theses and Dissertations--Biomedical Engineering

Open wounds account for about 50% of military injuries and 10% of non‐fatal traffic injuries. Scar tissue formation in these wounds may be reduced or prevented if treated with a combination of molecules whose release is tuned to the healing phases. The goal of this research was to develop flexible, layered drug delivery films for sequential, localized release of anti‐inflammatory, anti‐oxidant, and anti‐fibrotic molecules to soft tissue.

Films were composed of cellulose acetate phthalate (CAP) and Pluronic F‐127 (Pluronic). To impart flexibility, plasticizers, triethyl citrate (TEC) or tributyl citrate (TBC), were added. Mechanical analysis was ...


A Local, Sustained Delivery System For Zoledronic Acid And Rankl-Inhibitory Antibody As A Potential Treatment For Metastatic Bone Disease, Rohith Jayaram Jan 2015

A Local, Sustained Delivery System For Zoledronic Acid And Rankl-Inhibitory Antibody As A Potential Treatment For Metastatic Bone Disease, Rohith Jayaram

Theses and Dissertations--Biomedical Engineering

Cancerous solid tumors can migrate and lead to metastatic bone disease. Drugs prescribed to reduce bone resorption from metastasis, such as zoledronic acid and the RANKL-inhibitory antibody Denosumab, cause side effects such as osteonecrosis of the jaw when delivered systemically. This project used two biocompatible materials, acrylic bone cement (PMMA) and poly(lactic-co-glycolic acid) (PLGA), to incorporate and sustain release of anti-resorptive agents. Results showed similar mechanical properties for acrylic bone cements loaded up to 6.6% drug by weight. Results showed sustained zoledronic acid release for 8 weeks from both systems, with PMMA releasing up to 22% of loaded ...


Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam Jan 2015

Biomimetic Oral Mucin From Polymer Micelle Networks, Sundar Prasanth Authimoolam

Theses and Dissertations--Chemical and Materials Engineering

Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated ...


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited ...


Synthesis Of Multilayered Microparticles For Targeted Drug Delivery, Elizabeth Mercer Oct 2014

Synthesis Of Multilayered Microparticles For Targeted Drug Delivery, Elizabeth Mercer

Open Access Theses

Microparticles have been shown to be valuable in targeted drug delivery which can lead to an increased dose delivered to a targeted location, reduced patient side effects, and improved patient outcomes. The designed multilayered microparticles have the clinical application to deliver hydrophobic drugs to a targeted area. The composition of the microparticles consists of a poly-lactic acid (PLA) polymer core surrounded by a polymeric shell composed of Poly(lactic-co-glycolic acid)-Poly(ethylene glycol)-Maleimide(PLGA-PEG-Mal). The maleimide promotes conjugation of the collagen binding peptide, SILY. Targeting to type I collagen allows for this microparticle system to attach to exposed collagen ...


Curcumin-Loaded Magnetic Nanoaggregates Conjugated With Folic Acid For Targeted Cancer Treatment, Melessa Salem Jul 2014

Curcumin-Loaded Magnetic Nanoaggregates Conjugated With Folic Acid For Targeted Cancer Treatment, Melessa Salem

Electronic Thesis and Dissertation Repository

Cancer has been, and still remains, one of the most complicated diseases to treat. As a result of the side effects experienced from current cancer treatment methods, there has been a growing interest in the development of targeted drug delivery systems that can destroy cancer cells, but render healthy tissue unharmed. To address this challenge, magnetite nanoaggregates were synthesized through the precipitation of iron oxide in the presence of polymers, conjugated with folic acid for folate targeting, and loaded with curcumin for cancer treatment. The resulting magnetite nanoparticles were 10 – 20 nm in size and the aggregates formed varied in ...


Evaluation Of Methods To Account For Release From Nanofiber Scaffolds, Jennifer Moy May 2014

Evaluation Of Methods To Account For Release From Nanofiber Scaffolds, Jennifer Moy

Theses

Electrospinning is a common technique utilized to form fibers from the micro- to nanometer range. Nanofibers form through electrospinning can be utilized as scaffolds since the fiber structures are similar to the structures within the extracellular matrix. Researchers use additives, such as growth factors, to help facilitate cell proliferation and function. Also, researchers are attempting to use electrospun fibers for drug delivery and as wound dressings since the electrospun fibers have high surface area to volume ratio. In both situations, the release of either the additive or the drug needs to be controlled so that the fibers would release the ...


Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez May 2014

Bioactivity And Cell-Mediated Targeting Of Multistage Nanoporous Silicon Particles, Jonathan O. Martinez

UT GSBS Dissertations and Theses (Open Access)

Progress in drug delivery approaches have not adequately translated into clinical advances in the diagnosis or treatment of inflammatory disorders (e.g., cancer). This disconnect is rooted in the inefficient delivery of imaging and therapeutic agents to the inflamed site upon systemic delivery. A multitude of biological barriers pose insurmountable obstacles limiting the ability of the agent to effectively reach and accumulate at the target site. Nanoparticles (NP) surfaced as potential vectors to encapsulate and deliver biological agents. However, even after surface decoration, NP have failed to evade biological barriers (i.e., MPS) and to accumulate at the tumor site ...


Synthesis And Characterization Of Clickable Dendrimer Hydrogels For Ocular Drug Delivery, Jingfei Tian Apr 2014

Synthesis And Characterization Of Clickable Dendrimer Hydrogels For Ocular Drug Delivery, Jingfei Tian

Theses and Dissertations

Topical medication is a standard treatment for glaucoma. However, frequent dosing makes the therapy inconvenient and patient unfriendly. There is a great need to develop new topical formulations that provide long lasting noninvasive drug release. In this thesis, novel clickable dendrimer hydrogels for anti-glaucoma drug delivery were synthesized and characterized. Polyamidoamine (PAMAM) dendrimers have been widely applied for drug delivery. The physical characteristics they possess include monodispersity, water solubility, encapsulation ability, and a large number of surface groups. Polycationic PAMAM dendrimer G3 was surface modified with alkyne-PEG5-acid and then reacted with polyethylene glycol bisazide (PEG-BA, 1100 gmol-1) through click chemistry ...


Development And Application Of Biomimetic Electrospun Nanofibers In Total Joint Replacement, Wei Song Jan 2014

Development And Application Of Biomimetic Electrospun Nanofibers In Total Joint Replacement, Wei Song

Wayne State University Dissertations

Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing ...


Green Manufacturing Of Nanoparticles For Biomedical Applications, Sijia Yi Aug 2013

Green Manufacturing Of Nanoparticles For Biomedical Applications, Sijia Yi

Doctoral Dissertations

The vast majority of nanomaterials are chemically synthesized, a costly process, that is environmentally risky, and the produced nanoparticles are potentially toxic to patients. Nature-based nanomaterials, however, are proving to be much more biocompatible with lower environmental toxicity. Even though a variety of natural nanomaterials have been designed, fabrication technologies for the desired natural nanoparticles with reproducible quality, high productivity and low cost remain a challenge. My objective has been to establish strategies for the isolation, purification and characterization of nanoparticles using a production system based on green tea and fungus (Arthrobotrys oligospora) and also to develop new approaches for ...


Semi-Interpenetrating Network Gelatin Fiber Sca Old For Oral Mucosal Delivery Of Insulin, Leyuan Xu Jul 2013

Semi-Interpenetrating Network Gelatin Fiber Sca Old For Oral Mucosal Delivery Of Insulin, Leyuan Xu

Theses and Dissertations

Common therapy for diabetes mellitus is subcutaneous administration of insulin that is subject to serious disadvantages, such as patient noncompliance and occasional hypoglycemia. Hence, oral administration of insulin could be more convenient and serve as a desired route. However, oral administration of insulin is severely limited by the low bioavailability of insulin through the gastrointestinal tract. In this study, a semi-interpenetrating network gelatin fiber scaffold (sIPN GF) was fabricated for oral mucosal delivery of insulin as an alternative route. This sIPN GF was engineered from an electrospun gelatin fiber scaffold (GF), which was further crosslinked with polyethylene glycol diacrylate (PEG-DA ...


Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer Apr 2012

Encapsulation And Controlled Release Of Rhu-Erythropoietin From Chitosan Biopolymer Nanoparticles, Cody Bulmer

Electronic Thesis and Dissertation Repository

The objective of this research project was to develop a drug delivery system for recombinant human erythropoietin (rHu-EPO), a glycoprotein hormone used in the treatment of renal anaemia and chemotherapy induced anaemia, using the biopolymer chitosan as the base component. Two types of chitosan nanoparticles were produced through ionotropic gelation using flush mixing with either tripolyphosphate (TPP) or carrageenan polymer. Chitosan-TPP and chitosan-carrageenan nanoparticles were generated under a variety of conditions to evaluate the effects of chitosan concentration, chitosan to anion mass ratio and solution pH on the nanoparticle characteristics of particle diameter, surface charge and particle size distribution. A ...


A Novel Device And Nanoparticle-Based Approach For Improving Diagnosis And Treatment Of Pelvic Inflammatory Disease, Natasha Faith Cover Jan 2012

A Novel Device And Nanoparticle-Based Approach For Improving Diagnosis And Treatment Of Pelvic Inflammatory Disease, Natasha Faith Cover

Graduate Theses and Dissertations

Pelvic Inflammatory Disease (PID) is one of the most common causes of morbidity in women. PID is a polymicrobial infection of the female reproductive tract, and is associated with pelvic pain, abnormal uterine bleeding, and tubal damage that can lead to ectopic pregnancies and infertility. It is curable but the effects of PID can be permanent if not properly diagnosed and treated. PID presents as a spectrum of disease and is often missed at early stages; even acute PID can be difficult to diagnose, as there is no single conclusive diagnostic test. Currently, PID is identified and treated syndromically because ...


Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann Aug 2011

Targeted Multistage Delivery Of Nanoparticles To The Bone Marrow, Aman Mann

UT GSBS Dissertations and Theses (Open Access)

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while ...


Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel Jul 2011

Nanofabrication Of Halloysite-Pcl Composite Scaffolds And Functionalization Of Titanium For Tissue Regeneration, Shraddha Parshottambhai Patel

Doctoral Dissertations

Major medical needs may be achieved through regenerative medicine. Nanotechnology has triggered a research revolution in many important areas such as the biomedical sciences and bioengineering at the molecular level which has grown significantly due to the availability of new analytical applications and tools based on nanotechnology. Clinical conditions and diseases being targeted by nanotechnology research include burns, Alzheimer's and Parkinson's disease, implant failure, improved wound healing, birth defects, osteoporosis and congestive heart defects. Therapeutic use of growth factors and drugs to stimulate the production and/or function of endogenous cells represents a key area of regenerative medicine ...


Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng Apr 2011

Ultrasonic Assisted Layer-By-Layer Assembly For Stable Nanocolloids Of Curcumin And Paclitaxel, Zhiguo Zheng

Doctoral Dissertations

Researchers have been trying to fight cancer with synthesis of new bioactive compounds but many of these novel drugs have low solubility in water and it is difficult to deliver them into a patient's body. One way of solving this particular problem is to use nanoscale drug delivery systems. In this dissertation, we describe using an ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs with 50∼200 nm particle size with designed coating to achieve sustained release and target delivery.

Two methods for systematic manufacture of low solubility anti-cancer drug nanoparticles were proposed: I) Top-down approach to breakdown ...


High Throughput Design Of Functionalized Nanoparticles For Targeted Vaccine Delivery, Ana Vianey Chavez-Santoscoy Jan 2011

High Throughput Design Of Functionalized Nanoparticles For Targeted Vaccine Delivery, Ana Vianey Chavez-Santoscoy

Graduate Theses and Dissertations

This dissertation focuses on the design of functionalized nanoparticles, a novel approach to targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide "pathogen-like" properties.

Polyanhydride nanoparticles are promising vaccine platforms that have the potential to be used as controlled drug delivery devices as well as potent and effective immune adjuvants for the design of single dose vaccines. CLRs offer unique advantages for tailoring immune responses. Engagement of CLRs regulates antigen presenting cell activation and promotes delivery of antigens to specific intracellular compartments inside antigen presenting cells for efficient processing and presentation.

CLRs recognize conserved ...


Engineering Amphiphillic Polyanhydride Particle Platform For Targeted Drug And Vaccine Delivery, Brenda Rocio Carrillo-Conde Jan 2011

Engineering Amphiphillic Polyanhydride Particle Platform For Targeted Drug And Vaccine Delivery, Brenda Rocio Carrillo-Conde

Graduate Theses and Dissertations

In this work, a transdisciplinary approach that combines concepts from biomaterials, nanotechnology, carbohydrate and protein chemistry, molecular biology, immunology and computational analysis has been applied to rationally design and engineer novel vaccine platforms that encompass passive and active targeting strategies.

First, the intrinsic properties of the polyanhydride systems utilized in these studies were tailored to achieve the stability of proteins with the potential to be used as antigens and/or therapeutic agents. Amphiphillic polyanhydride chemistries showed the most optimal properties to preserve structural integrity and functionality of different proteins. The surface chemistry of polyanhydride particles was also identified as an ...


Synthetic Peptide Design For Functionalized Hydrogels: Development Of Cellularly Responsive Drug Delivery Platforms And Cyclic, Multivalent Peptide Derivatives Using Radical-Mediated Thiol-Ene/Thiol-Yne Chemistries, Alex Arthur Aimetti Jan 2010

Synthetic Peptide Design For Functionalized Hydrogels: Development Of Cellularly Responsive Drug Delivery Platforms And Cyclic, Multivalent Peptide Derivatives Using Radical-Mediated Thiol-Ene/Thiol-Yne Chemistries, Alex Arthur Aimetti

Chemical & Biological Engineering Graduate Theses & Dissertations

Poly(ethylene glycol) (PEG)-based hydrogels represent a class of biomaterials with a growing interest for their application in numerous fields, such as drug delivery and regenerative medicine. PEG is commonly used in these applications due to its hydrophilic and bioinert properties. Additionally, peptides have been successfully incorporated within PEG hydrogels to serve as biological functionalities within a synthetic polymer platform. Peptide-functionalized PEG hydrogels have been shown to act as extracellular matrix (ECM)-mimics capable of enhancing cell survival, function, and differentiation. Alternatively, peptides can be designed to degrade in recognition of highly specific, cell-secreted proteases. This phenomenon has been ...


Synthesis And Characterization Of Novel Temperature-Responsive Dendritic Peg-Pdlla Star Polymers For Drug Delivery, Arunvel Kailasan Nov 2008

Synthesis And Characterization Of Novel Temperature-Responsive Dendritic Peg-Pdlla Star Polymers For Drug Delivery, Arunvel Kailasan

Theses and Dissertations

This study describes a novel thermoresponsive dendritic polyethylene glycol-poly(D, L-lactide) (PEG-PDLLA) core-shell nanoparticle with potential for drug delivery and controlled release. A series of dendritic PEG-PDLLA nanoparticles were synthesized through conjugation of PEG to Starburst™ polyamidoamine (PAMAM) dendrimer G3.0 and subsequent ring-opening polymerization of DLLA, in which PEG chain length (i.e., MW=1500, 6000 or 12000 Dalton) was varied; however, the feeding molar ratio of DLLA monomers to the overall PEG repeat units on the dendrimer surface was kept at 1:1. Linear PEG-PDLLA copolymers were also syntheiszed under the same condition and used as control. According ...


Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran Jul 2008

Nanoengineered Templates For Controlled Delivery Of Bioactive Compounds, Nalinkanth Ghone Veerabadran

Doctoral Dissertations

The significance of any drugs, therapeutic proteins, or any bioactive compounds, is based not only on their effects on diseases but also on how specifically, how readily, how controllable and how prolonged their effects on the disease without having any side effects. Thus the techniques involved in the drug encapsulation and its controlled release for a longer duration of time form one of the important processes of drug reformulation. In recent years nanoparticles have created overwhelming attention for delivering drugs by nanoencapsulation. The smaller size of nanoparticles has longer circulation time and higher cellular uptake when compared with larger size ...