Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Louisiana Tech University

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 110

Full-Text Articles in Biomedical Engineering and Bioengineering

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu Mar 2024

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu

Doctoral Dissertations

With the development of technology and engineering, nanotechnology has been a multidisciplinary scientific field applied in nearly all science areas, including medicine, genetics, food industry, robotics. In this respect, nanomedicine has gained increasing attention and been a useful, effective therapy for cancer diagnosis, gene transfer, and drug delivery. To design an ideal nano drug delivery system with controlled drug releasing and improved encapsulated drug’s pharmacokinetic and pharmacodynamic profiles, hydrogels and polymer composites have witnessed increased research interest during the last decades. Recently, numerous polymers have been studied to fabricate the ideal wound dressing with biocompatibility, biodegradability, porous structural, and suitable …


Development And Characterization Of Injectable, Cell-Encapsulated Chitosan-Genipin Hydrogels, Tyler R. Priddy-Arrington Mar 2024

Development And Characterization Of Injectable, Cell-Encapsulated Chitosan-Genipin Hydrogels, Tyler R. Priddy-Arrington

Doctoral Dissertations

Over 150,000 patients undergo lower extremity amputation every year in the United States, most commonly caused by complications due to diabetes mellitus, peripheral vascular disease, and trauma. Diseased or damaged tissues that are unable to naturally repair themselves must either be fully removed or replaced, otherwise the injuries can lead to further complications such as infection or death. Tissue resection and amputation, as forms of removing damaged tissue, are not favorable to patients as they can cause pain, reduce mobility, and negatively impact quality of life. However, replacing lost or damaged tissues with donor tissues carries the risks of tissue …


Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu Mar 2024

Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu

Doctoral Dissertations

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population. Part of the glioma microenvironment are microglia, resident immune cells of the CNS that were thought to be involved in the pathogenesis of diverse neurodegenerative diseases. Though it remains uncertain what triggers microglial activation in these disorders, targeting and tracking microglial functions using nanotools like Quantum Dots (QDs) could help us elucidate them in such neurological diseases. This research focuses on the comparative study of different QDs formulations and their selective uptake by brain microglia in primary cultures …


Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati May 2021

Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati

Master's Theses

The brain accounts for 20% of overall energy metabolism in the body though it just comprises 2% of the total body mass but has a limited capacity of storing energy unlike other critical organs in the body such as the heart and liver. This energy along with oxygen and nutrients is supplied by cerebral blood flow (CBF), any interruption of which can cease the brain function within seconds with a potential irreversible neuronal injury, within minutes. Vascular cells along with astrocytes and neurons are a part of a recently developed concept known as the Neurovascular Unit responsible for Neurovascular coupling …


Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati May 2021

Glial Endothelial Brain Cell Co-Cultures For Testing Signaling Response And Delivery Of Novel Materials Across Blood Brain Barrier, Neela Prajapati

Doctoral Dissertations

The brain accounts for 20% of overall energy metabolism in the body though it just comprises 2% of the total body mass but has a limited capacity of storing energy unlike other critical organs in the body such as the heart and liver. This energy along with oxygen and nutrients is supplied by cerebral blood flow (CBF), any interruption of which can cease the brain function within seconds with a potential irreversible neuronal injury, within minutes. Vascular cells along with astrocytes and neurons are a part of a recently developed concept known as the Neurovascular Unit responsible for Neurovascular coupling …


Electrochemical Detection Of Reactive Oxygen Species Via A Platinum Microelectrode Array, Victor M. Carriere Jr. Jan 2020

Electrochemical Detection Of Reactive Oxygen Species Via A Platinum Microelectrode Array, Victor M. Carriere Jr.

Master's Theses

Oxidative stress, an excess of endogenous or exogenous reactive oxygen species (ROS) in the body, is closely aligned with inflammatory responses. ROS such as hydrogen peroxide, superoxide, and radical hydroxyl ion serve essential functions in fighting infection, but chronic elevation of these species irreversibly damages cellular components. Given the central role of inflammation in a variety of diseases, including Alzheimer’s Disease, atherosclerosis, and rheumatoid arthritis, a low-cost, extracellular, non-invasive assay of ROS is needed.

This work reports the use of a platinum microelectrode array (Pt MEA)-based ceramic probe to detect time- and concentration-dependent variations in hydrogen peroxide (H2O2) production by …


Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun Oct 2019

Electrolytic Metallization Of Halloysite Nanotubes And Antimicrobial Applications, Ahmed Humayun

Doctoral Dissertations

Due to increased reports of infections and biofouling arising from the use of invasive medical devices, novel antimicrobial agents with suitable anti-biofouling properties are critically needed. Transition metals exhibit substantial antimicrobial activity; however, their use is limited because of their inherent toxicity to eukaryotic cells. In this regard, naturally occurring halloysite clay nanotubes (HNTs) show significant promise. HNTs possess a high surface area for adsorption while its hollow lumen can be used for loading different materials.

Herein, we demonstrate an electrolytic method for generating and depositing metal nanoparticles (NPs) on the HNTs outer surface and we propose an optimized method …


Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


Improving Paper-Based Microfluidic Mixing With The Incorporation Of Flow Disrupting Structures, Hannah C. Green Oct 2019

Improving Paper-Based Microfluidic Mixing With The Incorporation Of Flow Disrupting Structures, Hannah C. Green

Master's Theses

Paper-based microfluidic devices provide a light-weight, cost effective platform for diagnostic and analytical testing. The goal of this project is to enhance paper-based microfluidic mixing by incorporating fluid flow disrupting structures (referred to here as rib bones) into the microdevice design to expand the analytical capabilities of paperbased microfluidic devices. The devices are fabricated on Whatman CHR-1 chromatography paper. The devices are designed in SolidWorks and printed using a solid ink printer (ColorQube 8580). The wax is penetrated into the paper to create hydrophobic barrier regions by heating in a convection oven until the wax is fully penetrated. The parameters …


From Experimental Studies To Coarse-Grained Modeling: Characterization Of Surface Area To Volume Ratio Effects On The Swelling Of Poly (Ethylene Glycol) Dimethacrylate Hydrogels, Gabriel Zahm Oct 2019

From Experimental Studies To Coarse-Grained Modeling: Characterization Of Surface Area To Volume Ratio Effects On The Swelling Of Poly (Ethylene Glycol) Dimethacrylate Hydrogels, Gabriel Zahm

Master's Theses

Understanding the performance of widely applied nanoscale hydrogel biomaterials is an unmet need within the biomedical field. The objective of this master’s thesis project was to evaluate the effects size and surface area has on the in vivo behavior of nanoscale hydrogels. The hypothesis tested was that at the nanoscale, the increased surface area to volume effects of nanoscale hydrogels play and important role in the overall swelling of hydrogels, such that nanoscale hydrogels swell to a greater degree than their bulk counterparts. To investigate this, the bulk swelling behavior of a series of neutral poly (ethylene glycol) di-methacrylate (PEGDMA) …


Metal Related Nanoparticles' Physical Behaviors In Different Physiologica Environments, Muhetaer Tuerhong Aug 2019

Metal Related Nanoparticles' Physical Behaviors In Different Physiologica Environments, Muhetaer Tuerhong

Master's Theses

In the past decades, the development of nanotechnology has had tremendous successes in material science. In this technology, the pertinent materials are used at the intermediate scale between individual molecules and their size in the nanometer region(1-100nm) compared to bulk materials. This nanoscale size provides a larger surface area; therefore, nanoparticles would be perfect essential components of nanotechnology. The reduced size of nanoparticles has a larger surface ratio to volume, which can modify their chemical, mechanical, structural, and electrical properties.

In this study, the main goal is to test different metal related nanoparticles, such as CuNPs (Copper nanoparticles), FeNPs (Iron …


Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp Aug 2019

Development Of A Low Profile, Endoscopic Implant For Long Term Brain Imaging, Benjamin Scott Kemp

Doctoral Dissertations

The increased public awareness of concussion and traumatic brain injury has motivated continued research into the brain, its functions, and especially its response to injury, with a focus on improving the brain’s repair capabilities. However, due to the critical nature of the tissue, it is currently difficult for researchers to acquire high resolution images below the cortex without sacrificing a lab animal. Sacrificing an animal greatly reduces the amount of data that can be obtained from it, making longitudinal studies unappealing or unfeasible because a large number of animals is needed to obtain useful data over multiple time points. Additionally, …


Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen May 2019

Two And Three-Dimensional Models For Material And Cells Interaction, Nam H. Nguyen

Doctoral Dissertations

Three-dimensional (3D) cell spheroid model has been long considered a better model to mimic in vivo physiology compared to two-dimensional (2D) cell culture model. Traditional 2D cell models provide a simple, convenient and quick technique for drug screening but fail to simulate the complexity and heterogeneity of cells in the in vivo environment. The last few decades have remarked substantial progress toward the advancement of three-dimensional (3D) cell cultures as systems which better mimic cellcell and cell-matrix interaction in the in vivo physiology. Nowadays, 3D cell models have been emerging, not only as an important approach in drug discovery and …


Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar Feb 2019

Development Of An Astrocyte/Glioma Co-Culture System For Measuring Cellular Dynamics, Urna Kansakar

Doctoral Dissertations

Gliomas are brain tumors that primarily arise from glial cells. Gliomas account for 70% of the brain tumors and they are more prevalent in older adults. About 60% of the people with gliomas experience at least one seizure. Brain tumors can grow and metastasize to neighboring areas, thereby destroying normal brain cells. In a brain tumor microenvironment, both malignant cancer cells and healthy brain cells are present. Studies have shown that astrocytes may have a role in tumor growth in the brain. Monocultures cannot evaluate interactions between two cell types and does not accurately represent in vivo conditions. Thus, a …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang Jul 2017

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang

Doctoral Dissertations

Electrochemical methods are widely used for chronic neurochemical sensing, but thus far, the organic solution redox reactions fouled the electrodes' surface. It caused the reduction of sensitivity and the electrodes' lifetime.

Here, we present the boron-doped nanocrystalline diamond microelectrodes (BDUNCD) as the next generation electrode material for neurochemical sensor development. To aid in long-term chronic monitoring of neurochemicals, they have a wide window of electrochemical potential, extremely low background current, and excellent chemical inertness. The main research goal is to reduce the rate of electrode fouling due to the reaction by-products, and significantly extend their useful lifetime.

We systematically characterize …


Improvement Of Fluorescence-Based Microfluidic Dna Analyzers, Collin Tranter Apr 2017

Improvement Of Fluorescence-Based Microfluidic Dna Analyzers, Collin Tranter

Doctoral Dissertations

A tremendous effort continues in the development of micro-total-analysis-systems; in support of this, many chemical passivation methods have been developed to enhance the biocompatibility of such microfluidic systems. However, the suitability of these passivation techniques to many fluorescence-based assays still remains inconsistent. This part of this work is focused on the performance of a third generation intercalating DNA dye when used within microfluidic devices treated with a select variety of passivating coatings. The results of these tests indicate that passivation coatings which are intended to shed DNA based on electrostatic repulsion will in fact imbibe the fluorescent DNA intercalating dye …


Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis Jan 2017

Development Of A Nonlinear Model For The Prediction Of Response Times Of Glucose Affinity Sensors Using Concanavalin A And Dextran And The Development Of A Differential Osmotic Glucose Affinity Sensor, Louis G. Reis

Doctoral Dissertations

With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell …


Expanding The Applications Of Poly(Dimethylsiloxane) In Biomicrofluidics, Sawyer D. Stone Jan 2017

Expanding The Applications Of Poly(Dimethylsiloxane) In Biomicrofluidics, Sawyer D. Stone

Doctoral Dissertations

This work aims to create novel applications for poly(dimethylsiloxane) (PDMS) in the field of biomicrofluidics through oxidative stress detection, doping of the polymer for intentional leaching into microdevices, and the development of low-cost implements for fabricating PDMS microfluidic devices. PDMS has become the polymer of choice for research in microfluidics due to its optical clarity, ease of fabrication, flexibility in design, good mechanical properties, and the ability to chemically modify the surface.

Biomicrofluidics enables the rapid throughput and analysis of small biological samples requiring less time investment and reagent use than traditional macroscale laboratory techniques. Polymer devices are inexpensive, easily …


Anxiolytic Effects Of Propranolol And Diphenoxylate On Mice And Automated Stretch-Attend Posture Analysis, Kevin Scott Holly Oct 2016

Anxiolytic Effects Of Propranolol And Diphenoxylate On Mice And Automated Stretch-Attend Posture Analysis, Kevin Scott Holly

Doctoral Dissertations

The prevention of social anxiety, performance anxiety, and social phobia via the combination of two generic drugs, diphenoxylate HC1 (opioid) plus atropine sulfate (anticholinergic) and propranolol HCl (beta blocker) was evaluated in mice through behavioral studies. A patent published on a September 8, 2011 by Benjamin D. Holly, US 2011/0218215 Al, prompted the research. The drug combination of diphenoxylate and atropine plus propranolol could be an immediate treatment for patients suffering from acute phobic and social anxiety disorders. Demonstrating the anxiolytic effects of the treatment on mice would validate a mouse model for neuroscientist to be used to detect the …


Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun Oct 2016

Potential Applications For Halloysite Nanotubes Based Drug Delivery Systems, Lin Sun

Doctoral Dissertations

Drug delivery refers to approaches, formulations, technologies, and systems for transporting a drug in the body. The purpose is to enhance the drug efficacy and to reduce side reactions, which can significantly improve treatment outcomes. Halloysite is a naturally occurred alumino-silicate clay with a tubular structure. It is a biocompatible material with a big surface area which can be used for attachment of targeted molecules. Besides, loaded molecules can present a sustained release manner in solution. These properties make halloysite nanotubes (HNTs) a good option for drug delivery.

In this study, a drug delivery system was built based on halloysite …


Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson Oct 2016

Generalized Partial Directed Coherence And Centrality Measures In Brain Networks For Epileptogenic Focus Localization, Joshua Aaron Adkinson

Doctoral Dissertations

Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated …


Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy Oct 2016

Lab-On-A-Chip Nucleic-Acid Analysis Towards Point-Of-Care Applications, Varun Lingaiah Kopparthy

Doctoral Dissertations

Recent infectious disease outbreaks, such as Ebola in 2013, highlight the need for fast and accurate diagnostic tools to combat the global spread of the disease. Detection and identification of the disease-causing viruses and bacteria at the genetic level is required for accurate diagnosis of the disease. Nucleic acid analysis systems have shown promise in identifying diseases such as HIV, anthrax, and Ebola in the past. Conventional nucleic acid analysis systems are still time consuming, and are not suitable for point-ofcare applications. Miniaturized nucleic acid systems has shown great promise for rapid analysis, but they have not been commercialized due …


Three-Dimensional Printing And Nanotechnology For Enhanced Implantable Materials, Karthik Kumar Tappa Jul 2016

Three-Dimensional Printing And Nanotechnology For Enhanced Implantable Materials, Karthik Kumar Tappa

Doctoral Dissertations

Orthopedic and oro-maxillofacial implants have revolutionized treatment of bone diseases and fractures. Currently available metallic implants have been in clinical use for more than 40 years and have proved medically efficacious. However, several drawbacks remain, such as excessive stiffness, accumulation of metal ions in surrounding tissue, growth restriction, required removal/revision surgery, inability to carry drugs, and susceptibility to infection. The need for additional revision surgery increases financial costs and prolongs recovery time for patients. These metallic implants are bulk manufactured and often do not meet patient's requirements. A surgeon must machine (cut, weld, trim or drill holes) them in order …


Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka Jul 2016

Nano Clay-Enhanced Calcium Phosphate Cements And Hydrogels For Biomedical Applications, Udayabhanu Jammalamadaka

Doctoral Dissertations

Biomaterials are used as templates for drug delivery, scaffolds in tissue engineering, grafts in surgeries, and support for tissue regeneration. Novel biomaterial composites are needed to meet multifaceted requirements of compatibility, ease of fabrication and controlled drug delivery. Currently used biomaterials in orthopedics surgeries suffer limitations in toxicity and preventing infections. Polymethyl methacrylate (PMMA) used as bone cement suffers from limitations of thermal necrosis and monomer toxicity calls for development of better cementing biomaterials. A biodegradable/bioresorbable cement with good mechanical properties is needed to address this short coming. Metal implants used in fixing fractures or total joint replacement needs improvements …


Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr. Apr 2016

Mutlifunctional Platforms For Gene And Drug Delivery For Cancer Therapy, Jeffery J. Ambrose Jr.

Doctoral Dissertations

The National Cancer Institute and the American Cancer Society estimate that 1.6 million new cancer incidences and over half a million cancer related deaths occur annually [1][2]. Cancer the second most common cause of death in the United States [1], [2]. Although the causes of cancer can vary depending on cell type, all or almost all instances of cancer arise from a mutation or from an abnormal activation of the cellular genes that control cell growth and mitosis [3].

Treatment of a given cancer type depends on the subtype, stage and progression of the cancer. Varieties of cancer therapy include …


Enhanced Bioactive Scaffolds For Bone Tissue Regeneration, Sonali Karnik Apr 2016

Enhanced Bioactive Scaffolds For Bone Tissue Regeneration, Sonali Karnik

Doctoral Dissertations

Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]

The field of tissue engineering and regenerative medicine involves the use of cells to form a …


Detecting And Screening Of The Prostate Cancer By Using An Optical Nanoporous Thin-Film Sensor, Salah Eldeen Mofleh Alzghoul Apr 2016

Detecting And Screening Of The Prostate Cancer By Using An Optical Nanoporous Thin-Film Sensor, Salah Eldeen Mofleh Alzghoul

Doctoral Dissertations

Prostate cancer (PC) affects elderly men more than young men. The currently used cancer biomarker, prostate-specific antigen (PSA), highly overestimates PC population. Men with high PSA levels often have to go through unnecessary, but physically painful, and expensive prosesses, such as prostate biopsies. Finding a prostate cancer marker that is produced selectively by cancer, but not by normal prostate cells will increase the reliability of PC test. In 2006, our collaborator (Dr. Girish Shah) discovered a novel protein, referred as neuroendocrine marker (NEM), secreted only by malignant prostate cells and released in blood circulation.

To examine whether the combined NEM-PSA …


Improving Nano-Drug Delivery By Using Near-Real Time Sensing And Feedback, Pratik Adhikari Jan 2016

Improving Nano-Drug Delivery By Using Near-Real Time Sensing And Feedback, Pratik Adhikari

Doctoral Dissertations

Personalized medicine, seen as the solution to address the variability among the individuals, is the movement which proposes customization of medical procedures based on the need of the patient during the stages of prevention, diagnosis, treatment, and follow up. As the technology in medicine expands and newer methods of diagnosis and treatment are introduced in the clinic, real time data from the procedures is critical to assess the performance at point of care. Real time feedback, through collection of data at point of care would help make informed clinical decisions, potentially improving the efficacy of the treatment. In this dissertation, …


Diamond Mems Biosensors: Development And Applications, Wenli Zhang Jul 2015

Diamond Mems Biosensors: Development And Applications, Wenli Zhang

Doctoral Dissertations

This research focuses on the development a dielectrophoresis-enhanced microfluidic impedance biosensor (DEP-e-MIB) to enable fast response, real-time, label-free, and highly sensitive sensor for bacterial detection in clinical sample. The proposed design consists of application of dielectrophoresis (DEP) across a microfluidic channel to one of the impedance spectroscopy electrodes in order to improve the existent bacterial detection limits with impedance spectroscopy. In order to realize such a design, choice of electrode material with a wide electrochemical potential window for water is very important. Conventional electrode material, such as gold, are typically insulated for the application of DEP, and they fail when …