Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Rehabilitation

Discipline
Institution
Publication Year
Publication

Articles 1 - 27 of 27

Full-Text Articles in Biomedical Engineering and Bioengineering

A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman Sep 2018

A Biomechanical And Physiological Signal Monitoring System For Four Degrees Of Upper Limb Movement, Allison R. Goldman

Electronic Thesis and Dissertation Repository

A lack of adherence to prescribed physical therapy regimens in improper healing results in poor outcomes for those affected by musculoskeletal disorders (MSDs) of the upper limb. Societal and psychological barriers to proper adherence can be addressed through the system presented in this work consisting of the following components: an ambulatory biosignal acquisition sleeve, an electromyography (EMG) based motion repetition detection algorithm, and the design of a compatible capacitive EMG acquisition module.

The biosignal acquisition sleeve was untethered, unobtrusive to motion, contained only modular components, and collected biomechanical and physiological sensor data to form full motion profiles of the following ...


The Kinematic And Biomechanical Effects Of Bracing On The Rehabilitation Of The Lcl Injured Elbow, Sara M. Banayan Feb 2018

The Kinematic And Biomechanical Effects Of Bracing On The Rehabilitation Of The Lcl Injured Elbow, Sara M. Banayan

Electronic Thesis and Dissertation Repository

Lateral collateral ligament (LCL) injuries are often treated non-operatively or with surgical repair. If instability persists, hinged elbow orthoses (HEOs) are often recommended. However, these orthoses are designed as a straight hinge, which does not account for the native carrying angle of the elbow. A custom HEO was designed to adjust the orthosis valgus angulation to measure in vitro elbow kinematics and biomechanics. An in vitro study investigated the effect of HEO valgus angulation during simulated active and passive flexion, in the vertical dependent and varus positions, with the forearm pronated and supinated. In the vertical dependent position, the orthosis ...


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to ...


Elbow Patients’ Data Collection And Analysis: An Examination Of Electromyography Healing Patterns, Raneem Haddara Oct 2016

Elbow Patients’ Data Collection And Analysis: An Examination Of Electromyography Healing Patterns, Raneem Haddara

Electronic Thesis and Dissertation Repository

Musculoskeletal conditions are the most common cause of severe long-term pain and physical disability, accounting for the highest disability costs of about $17 billion yearly. To provide better rehabilitation tactics, the knowledge gap between injuries and their healing mechanisms needs to be addressed. The use of electromyography (EMG) is very popular in detecting neuromuscular diseases or nerve lesions; however, there is limited knowledge available for quantifying healing patterns of EMG in orthopedic patients who have injured their joints, muscles, or bones. In order to quantify the progress of orthopedic patients and assess their neuromuscular health and muscle synergy patterns, EMG ...


Engineering Synthetic Feedback To Promote Recovery Of Self-Feeding Skills In People With Sensory Deficits Due To Stroke, Alexis Krueger Oct 2016

Engineering Synthetic Feedback To Promote Recovery Of Self-Feeding Skills In People With Sensory Deficits Due To Stroke, Alexis Krueger

Master's Theses (2009 -)

Kinesthesia refers to sensations of limb position and movement, and deficits of upper limb kinesthetic feedback are common after stroke, impairing stroke survivors’ ability to perform the fundamental reaching and stabilization behaviors needed for daily functions like self-feeding. I attempt to mitigate the negative impact of post-stroke kinesthesia deficits by evaluating the utility of vibrotactile sensory substitution to restore closed-loop kinesthetic feedback of the upper limb. As a first step, this study evaluated performance in healthy individuals during fundamental reaching, stabilization, and tracking behaviors while using supplemental vibrotactile feedback encoding either limb state information or goal-aware error information. First, I ...


Evaluation Of An Actuated Wrist Orthosis For Use In Assistive Upper Extremity Rehabilitation, Devon Holley Oct 2016

Evaluation Of An Actuated Wrist Orthosis For Use In Assistive Upper Extremity Rehabilitation, Devon Holley

Master's Theses (2009 -)

Cerebral palsy (CP) is a neurological condition caused by damage to motor control centers of the brain. This leads to physical and cognitive deficiencies that can reduce an individual’s quality of life. Specifically, motor deficiencies of the upper extremity can make it difficult for an individual to complete everyday tasks, including eating, drinking, getting dressed, or combing their hair. Physical therapy, involving repetitive tasks, has been shown to be effective in training normal motion of the limb by invoking the neuroplasticity of the brain and its ability to adapt in order to facilitate motor learning. Creating a device for ...


The Development Of A Prosthetic Training Software For Upper Limb Amputees, Tyler Kayne Sullins Jun 2016

The Development Of A Prosthetic Training Software For Upper Limb Amputees, Tyler Kayne Sullins

Graduate Theses and Dissertations

The purpose of this study was to develop an intuitive software that aids in the field of prosthetic training and rehabilitation by creating an individualized visualization of joint angles. This software is titled “the prosthetic training software (PTS) for individualized joint angle representation”, and it enables the individualized portrayal of predicted or pre-recorded joint angles. The PTS is an intuitive program for clinicians and prosthesis users that produces an animation of a virtual avatar reflecting the user’s segment lengths and amputation for rehabilitation and training purposes.

The PTS consists of a graphical user interface (GUI) and a 3D visualization ...


A Novel Approach To User Controlled Ambulation Of Lower Extremity Exoskeletons Using Admittance Control Paradigm, Kiran Kartika Karunakaran May 2016

A Novel Approach To User Controlled Ambulation Of Lower Extremity Exoskeletons Using Admittance Control Paradigm, Kiran Kartika Karunakaran

Dissertations

The robotic lower extremity exoskeletons address the ambulatory problems confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) can cause motor deficit to the lower extremities leading to inability to walk. Though wheelchairs provide mobility to the user, they do not provide support to all activities of everyday living to individuals with paraplegia.

Current research is addressing the issue of ambulation through the use of wearable exoskeletons that are pre-programmed. There are currently four exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the currently available exoskeletons have 2 active Degrees of Freedom (DOF ...


Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky Apr 2016

Structural-Functional Brain Connectivity Underlying Integrative Sensorimotor Function After Stroke, Benjamin Thomas Kalinosky

Dissertations (2009 -)

In this dissertation research project, we demonstrated the relationship between the structural and functional connections across the brain in stroke survivors. We used this information to predict arm function in stroke survivors, suggesting that the tools developed through this research will be useful for prescribing individualized rehabilitation strategies in people after stroke. Current clinical methods for rehabilitating sensorimotor function after stroke are not based on the locus of injury in the brain. Instead, therapies are generalized, treating symptoms such as weakness and spasticity. This results in outcomes that are highly variable, with severity of impairment immediately following stroke as the ...


Assessment Of A Hand Exoskeleton On Proximal And Distal Training In Virtual Environments For Robot Mediated Upper Extremity Rehabilitation, Kevin Abbruzzese Jan 2016

Assessment Of A Hand Exoskeleton On Proximal And Distal Training In Virtual Environments For Robot Mediated Upper Extremity Rehabilitation, Kevin Abbruzzese

Dissertations

Stroke is the leading cause of disability in the United States with approximately 800,000 cases per year. This cerebral vascular accident results in neurological impairments that reduce limb function and limit the daily independence of the individual. Evidence suggests that therapeutic interventions with repetitive motor training can aid in functional recovery of the paretic limb. Robotic rehabilitation may present an exercise intervention that can improve training and induce motor plasticity in individuals with stroke. An active (motorized) hand exoskeleton that provides support for wrist flexion/extension, abduction/adduction, pronation/supination, and finger pinch is integrated with a pre-existing 3-Degree ...


Refining A Post-Stroke Pharmacological And Physical Treatment To Reduce Infarct Volume Or Improve Functional Recovery, Using Gene Expression Changes In The Peri-Infarct Region To Examine Potential Mechanisms In Male And Female Rats, Moner A. Ragas Jan 2016

Refining A Post-Stroke Pharmacological And Physical Treatment To Reduce Infarct Volume Or Improve Functional Recovery, Using Gene Expression Changes In The Peri-Infarct Region To Examine Potential Mechanisms In Male And Female Rats, Moner A. Ragas

Browse all Theses and Dissertations

Stroke, a life-threatening medical condition, is the fifth-leading cause of death in the United States with an estimated annual cost of treatments above $70 billion. A combination of innovative approaches was used in our lab to optimize the pre-clinical stroke research design by choosing the most appropriate animal model and methodologies to increase the translational capability of the stroke research. The first study, modeled after ongoing clinical trials using fluoxetine, refined the appropriate timing of fluoxetine and ascorbic acid delivery if a rat was on simvastatin for 7 days pre-stroke and throughout the remainder of the study. Administration of fluoxetine ...


Sensorimotor Adaptation In Whole-Body Postural Control, Alison Pienciak-Siewert Jan 2016

Sensorimotor Adaptation In Whole-Body Postural Control, Alison Pienciak-Siewert

Mechanical Engineering Graduate Theses & Dissertations

The ability to maintain stable, upright standing is a critical component of our daily activities. This ability requires that we generate appropriate postural control when making voluntary movements and when responding to perturbations, and appropriately adapt that control to compensate for changing conditions. Despite this, adaptation of whole-body postural control is not well understood.

This dissertation investigates the control strategies involved in the adaptation of whole-body postural control and how well this learning transfers to different environments. We used an experimental paradigm in which subjects made reaching movements while standing and holding the handle of a force-generating robotic arm that ...


A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder Jan 2015

A Continous Rotary Actuation Mechanism For A Powered Hip Exoskeleton, Matthew C. Ryder

Masters Theses

This thesis presents a new mechanical design for an exoskeleton actuator to power the sagittal plane motion in the human hip. The device uses a DC motor to drive a Scotch yoke mechanism and series elasticity to take advantage of the cyclic nature of human gait and to reduce the maximum power and control requirements of the exoskeleton. The Scotch yoke actuator creates a position-dependent transmission that varies between 4:1 and infinity, with the peak transmission ratio aligned to the peak torque periods of the human gait cycle. Simulation results show that both the peak and average motor torque ...


Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker Oct 2013

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker

Dissertations (2009 -)

Maintaining dynamic balance is an important component of walking function that is likely impaired in chronic stroke survivors, evidenced by an increased prevalence of falls. Dynamic balance control requires maintaining the center of mass (COM) within the base of support during movement. During walking, dynamic balance control is achieved largely by modifying foot placement to adjust the base of support. However, chronic stroke survivors have difficulty with both precision control of foot placement, as well as reduced control of COM movement. The objective of this dissertation was to characterize dynamic balance control strategies during walking in chronic stroke survivors. Additionally ...


The Design And Development Of A Perceptual-Based Haptic Display Device, Sohaib Akhter Aug 2013

The Design And Development Of A Perceptual-Based Haptic Display Device, Sohaib Akhter

Theses and Dissertations

Graphical information presented as pictures, graphs, maps, and the like are an important media for relaying knowledge and are a fundamental means of education rarely experienced by people who are blind or have a severe visual impairment. This thesis presents the design, development and testing of a multiple finger, haptic matrix dynamic display device capable of relaying graphical information through simulated textures. The design is based on user perception studies that determined which hand constraints provided the best tradeoff between simplicity of design, accuracy and time to answer. The best design was one that incorporated multiple fingers in close proximity ...


Development Of An Eeg Brain-Machine Interface To Aid In Recovery Of Motor Function After Neurological Injury, Elizabeth Salmon Jan 2013

Development Of An Eeg Brain-Machine Interface To Aid In Recovery Of Motor Function After Neurological Injury, Elizabeth Salmon

Theses and Dissertations--Biomedical Engineering

Impaired motor function following neurological injury may be overcome through therapies that induce neuroplastic changes in the brain. Therapeutic methods include repetitive exercises that promote use-dependent plasticity (UDP), the benefit of which may be increased by first administering peripheral nerve stimulation (PNS) to activate afferent fibers, resulting in increased cortical excitability. We speculate that PNS delivered only in response to attempted movement would induce timing-dependent plasticity (TDP), a mechanism essential to normal motor learning. Here we develop a brain-machine interface (BMI) to detect movement intent and effort in healthy volunteers (n=5) from their electroencephalogram (EEG). This could be used ...


Development Of A Closed-Loop Force Reduction Mechanism In A Gait Rehabilitation Device, Jeffrey Frankart Nov 2012

Development Of A Closed-Loop Force Reduction Mechanism In A Gait Rehabilitation Device, Jeffrey Frankart

Theses and Dissertations

Elliptical trainers are prescribed in rehabilitative exercise but difficult to implement in populations with significant functional gait deficits. Typical elliptical machines do not mimic normal gait and therefore require modifications for clinical rehabilitation. This research builds on previous modifications of an elliptical trainer designed to simulate level-surface walking. This design differed from a commercial version. It included articulated footplates and an electromechanically-driven virtual-cam to control footplate position. Ankle dorsiflexion elicited lower-extremity muscle spasticity which produced an unwanted gait variant during stroke patient testing. Spasticity is a hyperexcitable stretch reflex causing inefficient gait. This project’s purpose was to develop an ...


Upper Extremity Rehabilitation Using Interactive Virtual Environments, Qinyin Qiu May 2012

Upper Extremity Rehabilitation Using Interactive Virtual Environments, Qinyin Qiu

Dissertations

Stroke affects more than 700,000 people annually in the U.S. It is the leading cause of major disability. Recovery of upper extremity function remains particularly resistant to intervention, with 80% to 95% of persons demonstrating residual upper extremity impairments lasting beyond six months after the stroke. The NJIT Robot Assistive Virtual Rehabilitation (NJIT-RAVR) system has been developed to study optimal strategies for rehabilitation of arm and hand function. Several commercial available devices, such as HapticMaster™, Cyberglove™, trakSTAR™ and Cybergrasp™, have been integrated and 11 simulations were developed to allow users to interact with virtual environments. Visual interfaces used ...


Virtual Reality Visual Feedback And Its Effect On Brain Excitability, Soha Saleh May 2012

Virtual Reality Visual Feedback And Its Effect On Brain Excitability, Soha Saleh

Dissertations

This dissertation examines manipulation of visual feedback in virtual reality (VR) to increase excitability of distinct neural networks in the sensorimotor cortex. The objective is to explore neural responses to visual feedback of motor activities performed in complex virtual environments during functional magnetic resonance imaging (fMRI), and to identify sensory manipulations that could further optimize VR rehabilitation of persons with hemiparesis. In addition, the effects of VR therapy on brain reorganization are investigated. An MRI-compatible VR system is used to provide subjects with online visual feedback of their hand movement. First, the author develops a protocol to analyze variability in ...


Electroencephalography (Eeg)-Based Brain Computer Interfaces For Rehabilitation, Dandan Huang Apr 2012

Electroencephalography (Eeg)-Based Brain Computer Interfaces For Rehabilitation, Dandan Huang

Theses and Dissertations

Objective: Brain-computer interface (BCI) technologies have been the subject of study for the past decades to help restore functions for people with severe motor disabilities and to improve their quality of life. BCI research can be generally categorized by control signals (invasive/non-invasive) or applications (e.g. neuroprosthetics/brain-actuated wheelchairs), and efforts have been devoted to better understand the characteristics and possible uses of brain signals. The purpose of this research is to explore the feasibility of a non-invasive BCI system with the combination of unique sensorimotor-rhythm (SMR) features. Specifically, a 2D virtual wheelchair control BCI is implemented to extend ...


The Dominant Role Of The Hip In Multijoint Reflex Responses In Human Spinal Cord Injury, Tanya Onushko Apr 2011

The Dominant Role Of The Hip In Multijoint Reflex Responses In Human Spinal Cord Injury, Tanya Onushko

Dissertations (2009 -)

Following a spinal cord injury (SCI), people often experience exaggerated reflexes, such that mild provocations can cause prolonged and uncontrolled muscle activity throughout the entire leg. These reflexes can be problematic and are known to interfere with functional tasks, such as transferring to and from a wheelchair, and they may interfere with locomotor function by prolonging muscle activity and/or inappropriately activating muscles during attempts to walk. While these multijoint reflexes have been shown to originate from several afferent cues, hip afferent input is a particularly potent sensory signal that readily triggers multijoint reflexes. The overall objective of this dissertation ...


Design And Validation Of An Mr Conditional Upper Extremity Evaluation System To Study Brain Activation Patterns After Stroke, Rubing Xu Aug 2010

Design And Validation Of An Mr Conditional Upper Extremity Evaluation System To Study Brain Activation Patterns After Stroke, Rubing Xu

Master's Theses (2009 -)

Stroke is the third leading cause of death and second most frequent cause of disability in the United States. Stroke rehabilitation methods have been developed to induce the cortical reorganization and motor-relearning that leads to stroke recovery. In this thesis, we designed and developed an MR conditional upper extremity reach and grasp movement evaluation system for the stroke survivors to study their kinematic performances in reach and grasp movement and the relationship between kinematic metrics and the recovery level measured by clinical assessment methods. We also applied the system into the functional MRI experiments to identify the ability to study ...


Digital Human Models Of People With Disabilities, Ron Hamameh Jan 2010

Digital Human Models Of People With Disabilities, Ron Hamameh

Wayne State University Theses

The current state-of-the-art in Digital Human Modeling (DHM) allows for full simulation and analysis of any task a person is required to perform at home, at work, in the military, in space, in sports, etc. The problem is that the software is missing a very important population: people with physical disabilities. What modifications and enhancements must be made to existing, commercially available DHM software to include this population?


Sensorimotor Experience In Virtual Environments, Katherine Grace August May 2009

Sensorimotor Experience In Virtual Environments, Katherine Grace August

Dissertations

The goal of rehabilitation is to reduce impairment and provide functional improvements resulting in quality participation in activities of life, Plasticity and motor learning principles provide inspiration for therapeutic interventions including movement repetition in a virtual reality environment, The objective of this research work was to investigate functional specific measurements (kinematic, behavioral) and neural correlates of motor experience of hand gesture activities in virtual environments stimulating sensory experience (VE) using a hand agent model. The fMRI compatible Virtual Environment Sign Language Instruction (VESLI) System was designed and developed to provide a number of rehabilitation and measurement features, to identify optimal ...


Creating New Visualization And Human Interface Devices For Theraputic Video Games, Kunal Jayant Doshi Dec 2007

Creating New Visualization And Human Interface Devices For Theraputic Video Games, Kunal Jayant Doshi

Theses

Virtual reality (VR) gaming environment as a tool for rehabilitation of patients with upper extremity disorders is fast gaining momentum. VR based motor training systems provide an engaging, motivating and adaptable environment where the motion of the limb displayed in the virtual world is a replication of the motion produced in the real world by the patient's extremity.

The goal of this thesis was to create a generic gaming system which can be interfaced to a number of different Human interface devices (HID) and produce rich graphics to create a virtual environment which closely resembles the real world. This ...


Design And Validation Of A Full Contact Gait Simulator For The Cadaveric Lower Extremity, Joseph Michael Iaquinto Jan 2006

Design And Validation Of A Full Contact Gait Simulator For The Cadaveric Lower Extremity, Joseph Michael Iaquinto

Theses and Dissertations

The projects goal was to create a device to simulate full contact gait in the cadaveric lower extremity. The Contact Gait Simulation System loads specific muscles to recreate anatomical dorsi and plantar flexion of the ankle under axial loading. A system of pneumatic load generation was connected a LabVIEW virtual instrument (VI), which controlled the application of these loads. The loads were roughly based off literature cited EMG data, and further modified from feedback. In addition to controlling the load system, the VI also coordinates external sensor timing. Along with this simulator, software was developed specifically for analyzing pressure data ...


Effects Of Diabetes And Aging On Posture And Acceleration Thresholds During Lateral Translations, Samantha Jean Richerson Apr 2003

Effects Of Diabetes And Aging On Posture And Acceleration Thresholds During Lateral Translations, Samantha Jean Richerson

Doctoral Dissertations

Research objectives. One source of falls in the elderly may be an inability to sufficiently adjust to transient postural perturbations or slips. Identifying useful predictors of fall potential, as well as factors that affect the ability of an individual to detect a movement of the standing support surface may provide insight into postural stability and methods to increase stability in elders. To do this, acceleration thresholds to short, precise, lateral platform translations and the resultant psychophysical responses of adults with early Type 2 diabetes to age-matched controls and young adults were measured.

Methods. Using an innovative SLIP-FALLS platform, short (1 ...