Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Finite element analysis

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 30

Full-Text Articles in Biomedical Engineering and Bioengineering

Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar Nov 2023

Head Impact Effects In Small Remotely Piloted Aircraft System (Srpas) Collisions: Gender Specific Risks And Vulnerable Population Protection, Md Farhan Hoque Sagar

Electronic Thesis and Dissertation Repository

This study focuses on supporting the development of safety regulations for vulnerable populations during drone to head impacts. First, the small female head and neck model was compared to cadaveric data. Then, combined with lab’s previous work, gender-based disparities in head impact responses were highlighted, with small females experiencing higher injury risk metrics, despite lower skull von Mises stress. Beyond small females, children of various ages and their head responses during impacts were also analyzed. In addition to the previously developed quadcopter drone model, a new Mavic Pro drone model was developed, and this model was integrated with human head …


Improving The Stimulation Selectivity In The Human Cochlea By Strategic Selection Of The Current Return Electrode, Ozan Cakmak Dec 2022

Improving The Stimulation Selectivity In The Human Cochlea By Strategic Selection Of The Current Return Electrode, Ozan Cakmak

Dissertations

The hearing quality provided by cochlear implants are poorly predicted by computer simulations. A realistic cochlear anatomy is crucial for the accuracy of predictions. In this study, the standard multipolar stimulation paradigms are revisited and Rattay’s Activating Function is evaluated in a finite element model of a realistic cochlear geometry that is based on µ-CT images and a commercial lead. The stimulation thresholds across the cochlear fibers were investigated for monopolar, bipolar, tripolar, and a novel (distant) bipolar electrode configuration using an active compartmental nerve model based on Schwartz-Eikhof-Frijns membrane dynamics. The results suggest that skipping of the stimulation point …


Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro Aug 2022

Predicting Surgical Outcome In Patients With Recurrent Patellar Dislocation, Dario De Caro

Boise State University Theses and Dissertations

Introduction

Lateral dislocation of the patella is a common injury in active adolescents and young adults. Patients who are ultimately managed surgically have a significantly lower risk of recurrent dislocation. However, determining the optimal surgical treatment remains a challenge, with patients sometimes undergoing multiple surgeries prior to successful stabilization. The aim of this study is to computationally evaluate patients that have undergone multiple surgeries to correct for recurrent lateral patellar dislocation and predict their clinical outcome.

Methods

Our patient cohort consisted of 16 patients with patella dislocation. Patient-specific imaging were used to create three-dimensional (3D) finite element (FE) models of …


The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim Aug 2022

The Effect Of Soft Tissue And Bone Morphology On The Stresses In The Foot And Ankle, Jinhyuk Kim

Mechanical & Aerospace Engineering Theses & Dissertations

The foot and ankle interface with the ground, thus they absorb reaction forces and initiate load distribution through the body. The plantar fascia (PF) is a flexible structure that absorbs reaction forces and distributes loading across the foot. It is frequently a source of foot pain especially when people have plantar fasciitis and/or diabetes mellitus. Finite element (FE) models of the foot and ankle were created to examine the function however, the plantar fascia is frequently modeled as a 1D tension only spring, which does not represent variations caused by injury and/or disease.

As models move toward being patient specific, …


Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco Aug 2022

Utilization Of Finite Element Analysis Techniques For Adolescent Idiopathic Scoliosis Surgical Planning, Michael A. Polanco

Mechanical & Aerospace Engineering Theses & Dissertations

Adolescent Idiopathic Scoliosis, a three-dimensional deformity of the thoracolumbar spine, affects approximately 1-3% of patients ages 10-18. Surgical correction and treatment of the spinal column is a costly and high-risk task that is consistently complicated by factors such as patient-specific spinal deformities, curve flexibility, and surgeon experience. The following dissertation utilizes finite element analysis to develop a cost-effective, building-block approach by which surgical procedures and kinematic evaluations may be investigated. All studies conducted are based off a volumetric, thoracolumbar finite element (FE) model developed from computer-aided design (CAD) anatomy whose components are kinematically validated with in-vitro data. Spinal ligament stiffness …


Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu Jan 2022

Structural And Hemodynamic Analysis Of Transcatheter Aortic Valves, Dong Qiu

Electronic Theses and Dissertations

The transcatheter aortic valve replacement (TAVR) procedure has become a well-established procedure for high, intermediate-risk, and low-risk patients. However, there is limited clinical data on the TAV's long-term durability, unlike SAV devices. Computational simulations can be an alternative way to evaluate the TAV devices. This dissertation aims to conduct structural and hemodynamic analyses on the TAV devices under different conditions using computational simulation approaches.

Initially, the impact of the bicuspid aortic valve on the TAV devices was evaluated. The result indicated that the CoreValve-like supra-annular self-expandable device was likely to have increased stress and strain on the leaflet when it …


The Effects Of Design Parameters On The Neural Recordings With Micro-Ecog Arrays, Manan Amish Sethia May 2021

The Effects Of Design Parameters On The Neural Recordings With Micro-Ecog Arrays, Manan Amish Sethia

Theses

In the field of neural prosthetics, electro-cortico-graph (ECoG) arrays are commonly used to record neural activity of the brain cortex both in animal and human subjects. A finite element model (FEM) was developed to simulate the electric field generated by a single neuron in the rat brain cortex and a micro ECoG array (µECoG) placed on the pia surface for recording the neural signal. The neuron was simulated as a dipole current source with a magnitude of 1µA and placed at three different depths in the motor cortex corresponding to different layers under the µECoG array. The array design was …


Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak Dec 2020

Experiments And Modeling Of The Chemo-Mechanically Coupled Behavior Of Polymeric Gels, Nikola Bosnjak

Dissertations

Polymeric materials consist of mutually entangled or chemically crosslinked long njitmolecular chains which form a polymer network. Due to their molecular structure, the njitpolymeric materials are known to undergo large deformation in response to various njitenvironmental stimuli, such as temperature, chemical potential and light.

When a polymer network is exposed to a suitable chemical solvent, the solvent molecules are able to diffuse inside the network, causing it to undergo a large volumetric deformation, known as swelling. In addition to volumetric deformation, this process involves the chemical mixing of the polymer network and solvent molecules, and is typically environmentally responsive. A …


Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali Dec 2020

Blast Shock-Wave Characterization In Experimental Shock Tubes, Sudeepto Kahali

Dissertations

Blast-induced traumatic brain injuries have affected U.S. soldiers deployed for extended periods in the gulf and Afghanistan wars. To identify the biomechanical and biochemical mechanisms of injury, critical in the identification of diagnostic and therapeutic tools, compressed gas-driven shock tubes are used by investigators to study shockwave-animal specimen interactions and its biological consequences. However, shock tubes are designed and operated in a variety of geometry with a range of process parameters, and the quality of shock wave characteristics relevant to field conditions and therefore the study of blast-induced traumatic brain injuries suffered by soldiers is affected by those conditions. Lab-to-lab …


An Exercise Device Used To Achieve Bone Formation Metrics For The Strengthening Of The Proximal Femur., Sean P. Coyle Nov 2020

An Exercise Device Used To Achieve Bone Formation Metrics For The Strengthening Of The Proximal Femur., Sean P. Coyle

Electronic Theses and Dissertations

Lateral falls often lead to hip fracture particularly in the elderly who have low bone mineral density. These fractures frequently lead to indirect mortality soon after injury. Normal use over the course over a lifetime leads to optimized adaptation of the bone in the proximal femur according to normal loading. A lateral fall generates non-normal, lateral loading at the proximal hip where the bone has not adapted to withstand such loading. The resulting fracture is generated by reversed strains on the bone tissue in the femoral neck in the hip in contrast to vertical, quotidian loading. Modern practices for preventing …


Computational Modeling Of The Human Brain For Mtbi Prediction And Diagnosis, Yanir Levy Aug 2020

Computational Modeling Of The Human Brain For Mtbi Prediction And Diagnosis, Yanir Levy

Electronic Thesis and Dissertation Repository

Sports related concussions and mild traumatic brain injuries have seen an increase in frequency over the past decade. The creation of highly biofidelic computational head models is an important step in understanding the mechanisms of these mild brain injuries and preventing them. Hence, the purpose of this research is to combine state-of-the-art computational models, brain imaging modalities and traditional head injury assessment protocols to simulate and predict the brains responses during traumatic head impacts. A novel, atlas-based, parcellated axon fiber embedded head model was developed which allows for in-depth analysis of the brain’s structural connectome tracts for injury diagnosis and …


Finite Element Analysis Of Hollow-Stemmed Shoulder Implants In Different Bone Qualities Derived From A Statistical Shape And Density Model, Pendar Soltanmohammadi Sep 2019

Finite Element Analysis Of Hollow-Stemmed Shoulder Implants In Different Bone Qualities Derived From A Statistical Shape And Density Model, Pendar Soltanmohammadi

Electronic Thesis and Dissertation Repository

The incidence of total shoulder arthroplasty procedures (TSA) to treat osteoarthritis has experienced the most rapid growth among all human joint replacements. However, stress shielding of proximal bone following its reconstruction is a complication of TSA triggering unfavorable adaptive bone remodeling, especially for osteoporotic patients.

A better understanding of how the shape and density of the shoulder vary among members of a population can help design more effective population-based orthopedic implants. Therefore, finite element models representing healthy, osteopenic, and osteoporotic bone qualities in a population were developed using our statistical shape and density model. Bones were reconstructed with hollow- and …


Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin …


A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez Jan 2019

A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez

Theses and Dissertations

While Lisfranc injuries in the mid foot are less common than other ankle and mid foot injuries, they pose challenges in both properly identifying them and treating them. When Lisfranc injuries are ligamentous and do not include obvious fractures, they are very challenging for clinicians to identify unless weight bearing radiographs are used. The result is that 20%-40% of Lisfranc injuries are missed in the initial evaluation. Even when injuries are correctly identified the outcomes of surgical procedures remain poor. Existing literature has compared the different surgical procedures but has not had a standard approach or procedures across studies. This …


The Relative Contribution Of Fixation Features, Activity, And Tibiofemoral Conformity On Initial Stability Of Cementless Tibial Trays, James Sullivan Deacy Jan 2019

The Relative Contribution Of Fixation Features, Activity, And Tibiofemoral Conformity On Initial Stability Of Cementless Tibial Trays, James Sullivan Deacy

Electronic Theses and Dissertations

Initial stability of cementless total knee replacements (TKR) is critical to implant success as excessive motion between the bone and implant prevents bony ingrowth that is critical to the long-term survivability of cementless implants. Prior studies have shown that excessive micromotion causes fibrous tissue growth instead of beneficial bony growth. There are many factors that influence initial stability including the design of the tibial tray and the tibiofemoral articulations. Understanding the impacts of these design features on micromotion between the bone and implants is crucial to improving the performance of cementless TKR. Prior studies only tested for the effect of …


Investigating The Likelihood Of Pediatric Femur Fracture Due To Falls Through Finite Element Analysis., Keyonna Mckinsey May 2018

Investigating The Likelihood Of Pediatric Femur Fracture Due To Falls Through Finite Element Analysis., Keyonna Mckinsey

Electronic Theses and Dissertations

Bone fracture is the second most common injury of child abuse. Studies have generally reported that femur fractures are more likely due to abuse than accidental causes in cases where the child is non-ambulatory. They have also found that household falls are commonly offered as the cause of injury in cases of abuse. In this study, a finite element (FE) pediatric femur model will be developed and used to evaluate likelihood of fracture in common household fall scenarios (bed falls and feet first falls). This will provide greater biomechanical evidence as to the likelihood of femur fracture due to common …


A Scientific Approach To Understanding The Head Trauma Endured By A Mixed Martial Arts Fighter, John William Michael Sorbello Jan 2018

A Scientific Approach To Understanding The Head Trauma Endured By A Mixed Martial Arts Fighter, John William Michael Sorbello

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this research is to gain some insight on the type of head trauma an athlete may encounter during mixed martial arts (MMA) competition. These athletes endure continuous blows to the head throughout their training and fighting career. The knowledge obtained from this research may assist MMA athletes and trainers in assessing the way they train, how they compete and, more importantly, how long they choose to compete in their amateur or professional MMA career.

The analysis is performed by first creating a three-dimensional solid model of the human head based on geometric coordinates originally obtained from a …


Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

McKelvey School of Engineering Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third, …


Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz Apr 2016

Injury Risk Assessment Of The Femur In Children With Osteogenesis Imperfecta, Jessica Marie Fritz

Dissertations (1934 -)

Osteogenesis imperfecta (OI) is a genetic disorder characterized by increased bone fragility and decreased bone mass, which leads to high rates of bone fracture. OI has a prevalence of 1/5,000 to 1/10,000 in the United States. About 90% of persons with OI have a genetic mutation in the coding for collagen type I, which is the major protein of connective tissues, including bone. While its prevalence classifies it as a rare disease, it is the most common disorder of bone etiology. Until recently, little was known about the mechanics and materials of OI bone or their impact on fracture risk. …


Finite Element And Probabilistic Analysis Of Soft Tissue Structures Of The Human Lumbar Spine, Dana Joseph Coombs Jan 2016

Finite Element And Probabilistic Analysis Of Soft Tissue Structures Of The Human Lumbar Spine, Dana Joseph Coombs

Electronic Theses and Dissertations

Human lumbar spine mechanics are influenced by soft tissue structures. Understanding and properly modeling these structures can help determine pathology, treatment, and implant design and performance. Finite element models of the L4-L5 level of the lumbar spine are often used, which include a representation of the intervertebral disc and spinal ligaments. Validation of these models are typically based on torque rotation data from a single subject or the models use average properties reported in literature. However, experimental testing reports variation up to 40% in ligament stiffness and even greater variability for annulus fibrosis properties. Probabilistic approaches enable consideration of the …


Osteoarthritis Induced Glenoid Morphology And Bone Quality: An Evaluation Of Augmented Glenoid Components, Nikolas K. Knowles Apr 2015

Osteoarthritis Induced Glenoid Morphology And Bone Quality: An Evaluation Of Augmented Glenoid Components, Nikolas K. Knowles

Electronic Thesis and Dissertation Repository

Osteoarthritis of the glenoid results in regional bone density variations and bone loss that may compromise early component fixation and support. The two common morphologies, symmetric and asymmetric erosion, were characterized by bone density and morphology, and assessed on the basis of bone removal and bone quality in the context of augmented glenoid components. The bone strain field was also compared when different augmented glenoid components underwent simulated joint loading using finite element analysis.

Asymmetrically eroded glenoids were found to have denser bone (p


On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji Dec 2014

On The Application Of Mechanical Vibration In Robotics-Assisted Soft Tissue Intervention, Iman Khalaji

Electronic Thesis and Dissertation Repository

Mechanical vibration as a way of transmitting energy has been an interesting subject to study. While cyclic oscillation is usually associated with fatigue effect, and hence a detrimental factor in failure of structures and machineries, by controlled transmission of vibration, energy can be transferred from the source to the target. In this thesis, the application of such mechanical vibration in a few surgical procedures is demonstrated.

Three challenges associated with lung cancer diagnosis and treatment are chosen for this purpose, namely, Motion Compensation, tumor targeting in lung Needle Insertion and Soft Tissue Dissection:

  1. A robotic solution is proposed …


Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume Nov 2014

Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume

Masters Theses

An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used …


Relationships Of Long-Term Bisphosphonate Treatment With Measures Of Bone Microarchitecture And Mechanical Competence, Jonathan Joseph Ward Jan 2014

Relationships Of Long-Term Bisphosphonate Treatment With Measures Of Bone Microarchitecture And Mechanical Competence, Jonathan Joseph Ward

Theses and Dissertations--Biomedical Engineering

Oral bisphosphonate drug therapy is a common and effective treatment for osteoporosis. Little is known about the long-term effects of bisphosphonates on bone quality. This study examined the structural and mechanical properties of trabecular bone following 0-16 years of bisphosphonate treatment. Fifty-three iliac crest bone samples of Caucasian women diagnosed with low turnover osteoporosis were identified from the Kentucky Bone Registry. Forty-five were treated with oral bisphosphonates for 1 to 16 years while eight were treatment naive. A section of trabecular bone was chosen from a micro-computed tomography (Scanco µCT 40) scan of each sample for a uniaxial linearly elastic …


Tooth Cusp Radius Of Curvature As A Dietary Correlate In Primates, Michael Anthony Berthaume Sep 2013

Tooth Cusp Radius Of Curvature As A Dietary Correlate In Primates, Michael Anthony Berthaume

Open Access Dissertations

Tooth cusp radius of curvature (RoC) has been hypothesized to play an important role in food item breakdown, but has remained largely unstudied due to difficulties in measuring and modeling RoC in multicusped teeth. We tested these hypotheses using a parametric model of a four cusped, maxillary, bunodont molar in conjunction with finite element analysis. When our data failed to support existing hypotheses, we put forth and tested the Complex Cusp Hypothesis which states that, during brittle food items breakdown, an optimally shaped molar would be maximizing stresses in the food item while minimizing stresses in the enamel. After gaining …


Analysis Of Acetabular Cup Orientation Effects On Stress Shielding In Total Hip Replacements Using Finite Element Methods, Brogan Mcguire, Jennifer Gemkow, Brad Gausewitz, Alex Georges Jun 2013

Analysis Of Acetabular Cup Orientation Effects On Stress Shielding In Total Hip Replacements Using Finite Element Methods, Brogan Mcguire, Jennifer Gemkow, Brad Gausewitz, Alex Georges

Biomedical Engineering

Improper positioning of the acetabular cup has been shown to contribute to issues such as high wear rates and dislocations in total hip replacements. The differences in contact mechanics due to varying orientation of the acetabular cup may also significantly affect strain distribution in the femur. This study examined these effects of acetabular orientation changes and their contribution to stress shielding using finite element analysis. A solid model of a cementless total hip implant was obtained using 3D point scanning and implanted virtually into a femur solid model. The implanted femur model was imported into ABAQUS and loaded with a …


Representing Intersubject Variability With A Statistical Shape And Alignment Model Of The Knee, Chandreshwar Rao Jan 2013

Representing Intersubject Variability With A Statistical Shape And Alignment Model Of The Knee, Chandreshwar Rao

Electronic Theses and Dissertations

Prior statistical shape models have not considered multiple structures in the knee joint to characterize anatomic variation which are required to investigate joint mechanics further for the successful knee replacement. Accordingly, the study's objective was to develop statistical shape and alignment model (SSAM) to capture intersubject variability and demonstrate the ability to generate realistic instances for use in finite element analysis (FEA). SSAM described the variability in the training set of 20 subjects with a series of modes of variation obtained by performing principal component analysis (PCA). PCA produced modes of variation with the first 3 modes representing 70% and …


Finite Element Analysis Of Transverse Medial Malleolar Fracture Fixation, Ruchi Chande May 2012

Finite Element Analysis Of Transverse Medial Malleolar Fracture Fixation, Ruchi Chande

Theses and Dissertations

Injury to the medial malleolus, the distal end of the tibia and one of the bones comprising the ankle joint, can occur in various loading scenarios. Open reduction/internal fixation (ORIF) to reattach the malleolar fragment to the proximal tibia can be achieved via various devices, however small fragments are particularly challenging to treat. In this study, computational finite element analysis (FEA) was utilized to investigate the fixation of transverse medial malleolar fractures by two cancellous screws or by a new fixation device, the Medial Malleolar Sled™. Cadaveric testing assessed the performance of the two constructs in both tension and torsion. …


Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao Jan 2012

Explicit Finite Element Modeling Of The Human Lumbar Spine, Milind Rao

Electronic Theses and Dissertations

Validated finite element (FE) models of the functional spinal unit (FSU) and lumbar spine are essential in design-phase device development and in assessing the mechanics associated with normal spine function and degenerative disc disease (DDD), as well as the impact of fusion and total disc replacement (TDR). Although experimental data from fully intact specimens can be used for model calibration and validation, the contributions from the individual structures (disc, facets, and ligaments) may be inappropriately distributed. Hence, creation of decompression conditions or device implantations that require structure removal may not have the proper resulting mechanics. An explicit FE formulation may …


Development Of Physiologic Contact Models For Articular Surfaces, John Owen May 2011

Development Of Physiologic Contact Models For Articular Surfaces, John Owen

Theses and Dissertations

The superficial tangential zone (STZ) plays a significant role in normal articular cartilage’s ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. Finite element models were developed to examine the STZ’s role in normal and repaired articular surfaces under different contact conditions. Models were developed by incrementally adding improvements which culminated in contact loading of curved models by permeable and impermeable rigid surfaces and a normal cartilage layer. In the normal STZ, permeability was strain-dependent on volumetric strain; tension-compression nonlinearity modeled collagen behavior. Nonlinear geometry accounted for finite …