Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomechanics and Biotransport

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 216

Full-Text Articles in Biomedical Engineering and Bioengineering

Predicting And Preventing Traumatic Brain Injury: A Novel Computational Approach, Kewei Bian Aug 2019

Predicting And Preventing Traumatic Brain Injury: A Novel Computational Approach, Kewei Bian

Electronic Thesis and Dissertation Repository

Traumatic brain injury (TBI) is a severe health problem for society. Meanwhile, predicting and preventing TBI remains challenging in the field. Peak rotational velocity was demonstrated to be correlated to brain strain responses, and hence could potentially serve as a good predictor for brain injury. Brain strain was influenced by impact direction, deceleration and impact loading curve shapes. Wearing helmets is an effective way to protect the brain from TBI, but there lacks a study on evaluating helmet performance based on both energy absorption and brain strain response, which this study addressed. Interestingly, helmet shell absorbed around half of the ...


The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie Aug 2019

The Effect Of Implant Conformity On Muscle Force Requirements In The Implanted Knee, Grace Mcconnochie

Boise State University Theses and Dissertations

Implant geometry is a significant factor in determining knee stability and patient satisfaction following total knee replacement (TKR). Ineffective muscle recruitment, impaired joint functionality and increased implant wear are consequences of an unstable knee replacement. Current knee laxity evaluation techniques are limited in their ability to account for the muscular response to knee instability. This study utilizes a subject specific lower-body musculoskeletal finite element (FE) model with dynamic muscle loading to evaluate implant laxity during activities of daily living. The effect of varying implant conformity on the muscle forces required to maintain a target kinematic profile during simulated laxity testing ...


Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons Aug 2019

Development Of A Statistical Shape-Function Model Of The Implanted Knee For Real-Time Prediction Of Joint Mechanics, Kalin Gibbons

Boise State University Theses and Dissertations

Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implant knee to instantaneously predict output mechanics in an efficient manner. Finite element methods were combined with Latin ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki Jun 2019

Sand Foot: A Prosthesis For Walking On Sand, Samantha A. Galicinao, John Dewing, Daniel Dugan Dotson, Christopher Urasaki

Biomedical Engineering

This critical design report describes the product development of a prosthesis for use on sand. Quality of Life Plus (QL+), a national non-profit organization aimed to develop prostheses for veterans and people with disabilities, introduced this project and its accompanying challenger, Sgt. Brady, to Cal Poly’s Interdisciplinary Senior Project class in September 2018. After consulting with Sgt. Brady and QL+ and performing extensive research, the Sand Foot team defined customer requirements and engineering specifications to meet these requirements. Comfortability, durability, and sandproof were key customer requirements. Several conceptual models were brainstormed and a final design was selected based on ...


3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews May 2019

3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews

Mechanical Engineering Undergraduate Honors Theses

This paper details an investigation into methods and designs of 3D printing a microfluidic system capable of droplet emulsion using NinjaFlex filament. The specific field in which this paper’s experiment is rooted is dubbed “BioMEMS,” short for bio microelectromechanical systems. One prominent research area in BioMEMS is developing a “lab on a chip.” Essentially, the goal is to miniaturize common lab processes to the micro scale, rendering it possible to include these processes in a small chip. Reducing necessary sample sizes, shortening the reaction times of lab processes, and increasing mobility of lab processes can all be realized through ...


Fluctuations In Walking Speeds And Spatiotemporal Gait Parameters When Walking On A Self-Paced Treadmill At Level, Incline, And Decline Slopes, Cesar Castano May 2019

Fluctuations In Walking Speeds And Spatiotemporal Gait Parameters When Walking On A Self-Paced Treadmill At Level, Incline, And Decline Slopes, Cesar Castano

Electronic Theses and Dissertations

On a daily basis, humans walk over a variety of terrains. Studies have shown that spatiotemporal gait parameters, such as stride length, stride frequency, stride variability, etc., change when humans walk down a decline and up an incline compared to level ground. However, these studies have been limited to using fixed speed treadmills or analyzing a small number of strides when conducted over ground. Thus, there is a need to investigate the fluctuations in spatiotemporal gait parameters of humans walking at their self-selected speed, which requires recording hundreds of strides. Here we hypothesized that subjects will walk with a slower ...


Energy Expenditure And Stability During Self-Paced Walking On Different Slopes, Alanna Raffaelli May 2019

Energy Expenditure And Stability During Self-Paced Walking On Different Slopes, Alanna Raffaelli

Electronic Theses and Dissertations

Metabolic power and cost of transport (COT) are common quantifiers for effort when performing tasks including walking and running. Most studies focus on using a range of normal walking speeds over level ground or varied slopes. However, these studies use fixed-speed conditions. Fatigue, stability, metabolic expenditure, heart rate, and many other factors contribute to normal walking speed varying over time. This study aimed to show that allowing a subject to walk with a self-paced speed should correlate to a minimum COT at a given slope. This study also aimed to determine if a preferred slope exists based on minimizing metabolic ...


Classifying And Predicting Walking Speed From Electroencephalography Data, Allen Rahrooh May 2019

Classifying And Predicting Walking Speed From Electroencephalography Data, Allen Rahrooh

Electronic Theses and Dissertations

Electroencephalography (EEG) non-invasively records electrocortical activity and can be used to understand how the brain functions to control movements and walking. Studies have shown that electrocortical dynamics are coupled with the gait cycle and change when walking at different speeds. Thus, EEG signals likely contain information regarding walking speed that could potentially be used to predict walking speed using just EEG signals recorded during walking. The purpose of this study was to determine whether walking speed could be predicted from EEG recorded as subjects walked on a treadmill with a range of speeds (0.5 m/s, 0.75 m ...


Conceptualization And Fabrication Of A Bioinspired Mobile Robot Actuated By Shape Memory Alloy Springs, Lietsel Richardson May 2019

Conceptualization And Fabrication Of A Bioinspired Mobile Robot Actuated By Shape Memory Alloy Springs, Lietsel Richardson

Electronic Theses and Dissertations

This work is an experimental study and fabrication of design concepts to validate the feasibility of smart materials and their applications in bio-inspired robotics. Shape-Memory Alloy (SMA) springs are selected as the smart material actuators of interest to achieve locomotion in the proposed mobile robot. Based on a previous design of the robot, this work focuses on both implementing a new locomotion concept and reducing size and weight of the previous design, both using SMA based actuators. Objectives are met in consideration of the conceptual mechanics of circular robot locomotion. The first prototype is a variation of the original design ...


Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry May 2019

Volumetric Muscle Loss: The Role Of Physical Activity And Autologous Repair On Force Recovery And Signaling Pathways, Richard Perry

Theses and Dissertations

Volumetric muscle loss affects both military and civilian persons. The hallmark of this injury is incomplete muscle regeneration, excessive fibrosis, and chronic inflammatory signaling resulting in permanent functional loss. Since permanent functional loss drastically reduces quality of life, many studies have been conducted to improve force recovery. Current scientific literature considers a repair strategy of either devitalized scaffolds infused with growth factors or viable tissue plus activating factors to be the more promising interventions for optimal force recovery. PURPOSE The purpose of this study is to incorporate autologous repair and physical activity and observe the effects of muscle force recovery ...


The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez Mar 2019

The Effect Of Defects And Surface Modification On Biomolecular Assembly And Transport, Haneen Martinez

Nanoscience and Microsystems ETDs

Nanoscale transport using the kinesin-microtubule (MT) biomolecular system has been successfully used in a wide range of nanotechnological applications including self-assembly, nanofluidic transport, and biosensing. Most of these applications use the ‘gliding motility geometry’, in which surface-adhered kinesin motors attach and propel MT filaments across the surface, a process driven by ATP hydrolysis. It has been demonstrated that active assembly facilitated by these biomolecular motors results in complex, non-equilibrium nanostructures currently unattainable through conventional self-assembly methods. In particular, MTs functionalized with biotin assemble into rings and spools upon introduction of streptavidin and/or streptavidin-coated nanoparticles. Upon closer examination of these ...


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid ...


Development And Exploration Of A Z-Shaped Foot And Ankle Internal Fixation Plate, Rhaz Shaghaghi Paul, Ian Hames, Sean Rich Jan 2019

Development And Exploration Of A Z-Shaped Foot And Ankle Internal Fixation Plate, Rhaz Shaghaghi Paul, Ian Hames, Sean Rich

Williams Honors College, Honors Research Projects

This paper will detail the design process of developing a Z-shaped foot and ankle internal fixation plating system. Group 6: Plates for the Sole was made up of 5 team members, who worked together to accommodate their client’s request to complete a biomechanical analysis of a Z-Plate design and a construct a prototype. The Z-Plate’s purpose is to provide podiatrists with a new solution that can fit nicely on the small, irregular bones of the foot, while also remaining strong enough to withstand the forces and torques of the foot.


Project "Auxilia" - Jaiden's Prosthetic Arm, Christopher Halley, Lindsay Jaros, Autumn Young Jan 2019

Project "Auxilia" - Jaiden's Prosthetic Arm, Christopher Halley, Lindsay Jaros, Autumn Young

Williams Honors College, Honors Research Projects

The main objective of this project was to create a prosthetic arm for a 15 year old boy named Jaiden Foden. Jaiden was born with only one fully developed limb as a result of a genetic disorder, Hanhart Syndrome II. His right arm becomes a residual limb below the elbow, but has two fingers which act in a “claw-like” movement. Jaiden’s left arm becomes a residual limb above the elbow, and his left leg becomes a residual limb above the knee. The goal of the arm was to increase Jaiden’s overall independence and to help in completing daily ...


Investigating Alternative Measures Of Functional Recovery In Rat Sciatic Nerve Injury, Mariah L. Costa, Rebecca K. Willits Jan 2019

Investigating Alternative Measures Of Functional Recovery In Rat Sciatic Nerve Injury, Mariah L. Costa, Rebecca K. Willits

Williams Honors College, Honors Research Projects

There is a pressing need for advancements in peripheral nerve repair techniques and functional recovery evaluation methods. The rat sciatic nerve injury model is a well examined model for peripheral nerve repair. One measure of functional recovery after nerve damage, the sciatic functional index (SFI), fails in the presence of self-mutilation, toe contracture, and other abnormalities in gait. In this IACUC approved study, the sciatic nerve was severed in four experimental groups (n=5). The nerves were repaired with Arginylglycylaspartic acid-poly(ε-caprolactone) (RGD-PCL) peptide functionalized nanofibers, non-functionalized PCL control nanofibers, an isograft, and a negative control empty conduit. Video walking ...


Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu Jan 2019

Quantification Of Myocardial Mechanics In Left Ventricles Under Inotropic Stimulation And In Healthy Right Ventricles Using 3d Dense Cmr, Zhan-Qiu Liu

Theses and Dissertations--Mechanical Engineering

Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for ...


Thenar Muscle And Transverse Carpal Ligament Relationship, Jeremy Granieri Loss Jan 2019

Thenar Muscle And Transverse Carpal Ligament Relationship, Jeremy Granieri Loss

ETD Archive

The transverse carpal ligament (TCL) acts as a partial origin for the thenar muscles (abductor pollicis brevis (APB), flexor pollicis brevis (FPB), opponens pollicis (OPP)). The attachment between the thenar muscles and TCL implies a relationship between the tissues. The thenar muscles rely on their origins for thumb motion and force production. However, individual thenar origin information is lacking. Further information regarding the anatomical relationship between the individual thenar muscles and TCL may provide insight into thenar muscle function. In addition, the TCL responds to thenar muscle contraction as shown by volar migration of the TCL during various thumb movements ...


Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro Jan 2019

Estimation And Prediction Of The Human Gait Dynamics For The Control Of An Ankle-Foot Prosthesis, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

With the growing population of amputees, powered prostheses can be a solution to improve the quality of life for many people. Powered ankle-foot prostheses can be made to behave similar to the lost limb via controllers that emulate the mechanical impedance of the human ankle. Therefore, the understanding of human ankle dynamics is of major significance. First, this work reports the modulation of the mechanical impedance via two mechanisms: the co-contraction of the calf muscles and a change of mean ankle torque and angle. Then, the mechanical impedance of the ankle was determined, for the first time, as a multivariable ...


A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez Jan 2019

A Computational Assessment Of Lisfranc Injuries And Their Surgical Repairs, Michael Perez

Theses and Dissertations

While Lisfranc injuries in the mid foot are less common than other ankle and mid foot injuries, they pose challenges in both properly identifying them and treating them. When Lisfranc injuries are ligamentous and do not include obvious fractures, they are very challenging for clinicians to identify unless weight bearing radiographs are used. The result is that 20%-40% of Lisfranc injuries are missed in the initial evaluation. Even when injuries are correctly identified the outcomes of surgical procedures remain poor. Existing literature has compared the different surgical procedures but has not had a standard approach or procedures across studies ...


The Role Of Kras In Mechanosensing In Non-Small Cell Lung Cancer, Krista M. Powell Jan 2019

The Role Of Kras In Mechanosensing In Non-Small Cell Lung Cancer, Krista M. Powell

Theses and Dissertations

Lung cancer is the number one cause of cancer related death worldwide, with more than 1.6 million fatalities each year. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers, with KRAS being one of the most prevalent oncogenic driver mutations. Therapeutic approaches for KRAS-mutated NSCLC have been extensively explored due to the US National Cancer Institute RAS Initiative, but methods of directly targeting KRAS or downstream effectors, such as MEK, still have poor results. Previous reports have shown that KRAS-mutated NSCLC activate distinct receptor tyrosine kinases (RTKs) depending on the epithelial or mesenchymal state. Epithelial-to-mesenchymal transition ...


Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop Jan 2019

Estimation Of Multi-Directional Ankle Impedance As A Function Of Lower Extremity Muscle Activation, Lauren Knop

Dissertations, Master's Theses and Master's Reports

The purpose of this research is to investigate the relationship between the mechanical impedance of the human ankle and the corresponding lower extremity muscle activity. Three experimental studies were performed to measure the ankle impedance about multiple degrees of freedom (DOF), while the ankle was subjected to different loading conditions and different levels of muscle activity. The first study determined the non-loaded ankle impedance in the sagittal, frontal, and transverse anatomical planes while the ankle was suspended above the ground. The subjects actively co-contracted their agonist and antagonistic muscles to various levels, measured using electromyography (EMG). An Artificial Neural Network ...


Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses and Project Reports

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip ...


Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot Oct 2018

Computational Aerodynamics And Anatomical Characterization Of Laryngotracheal Stenosis In Children, William Poynot

LSU Master's Theses

Laryngotracheal stenosis (LTS) is a health condition in which an obstruction in the upper trachea can cause breathing difficulties and increased incidence of infection, among other symptoms. Occurring most commonly due to intubation in infants, LTS often requires corrective surgery. Currently, clinical methods of assessing the blockage region are simplistic and subjective, and it is challenging to determine the most effective surgical strategy for any given patient. In the present work, a comprehensive methodology is proposed for characterizing the stenosis region both in terms of its anatomical parameters and its corresponding aerodynamic properties. The combination of computational fluid dynamics (CFD ...


Microfluidic Electrical Impedance Spectroscopy, John J. Foley Sep 2018

Microfluidic Electrical Impedance Spectroscopy, John J. Foley

Master's Theses and Project Reports

The goal of this study is to design and manufacture a microfluidic device capable of measuring changes in impedance valuesof microfluidic cell cultures. Tocharacterize this, an interdigitated array of electrodes was patterned over glass, where it was then bonded to a series of fluidic networks created in PDMS via soft lithography. The device measured ethanol impedance initially to show that values remain consistent over time. Impedance values of water and 1% wt. saltwater were compared to show that the device is able to detect changes in impedance, with up to a 60% reduction in electrical impedance in saltwater. Cells were ...


Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger Aug 2018

Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger

Master's Theses and Project Reports

ACL (anterior cruciate ligament) injuries of the knee joint alter biomechanics and may cause abnormal loading conditions that place patients at a higher risk of developing osteoarthritis (OA). There are multiple types of ACL reconstruction (ACLR), but all types aim to restore anterior tibial translation and internal tibial rotation following surgery. Analyzing knee joint contact loads provide insight into the loading conditions following ACLR that may contribute to the long-term development of OA. Ten ACLR subjects, who underwent the same reconstruction, performed gait and cycling experiments while kinematic and kinetic data were collected. Inverse dynamic analyses were performed on processed ...


Epithelial Sheet Response To External Stimuli, Yashar Bashirzadeh Jul 2018

Epithelial Sheet Response To External Stimuli, Yashar Bashirzadeh

Mechanical & Aerospace Engineering Theses & Dissertations

Mechanical communication of adherent cells with their micro-environment is mediated by cytoskeletal and adhesion proteins. These mechanical links aid tissues in maintaining their coherence in the context of the surrounding extra cellular matrix (ECM). Epithelial tissues exert force on the ECM through integrin-based junctions and maintain their coherency through E-cadherin-based cell-cell junctions while dynamically undergoing collective migration. Such a complex network of communication involving the cell cytoskeleton and adhesion proteins modulates the tissue's response to external cues. Two distinct forms of such external stimuli are those of electrical and mechanical origin.

Epithelial tissues quickly respond to physiologically relevant electric ...


The Development Of A Temporomandibular Force Simulator To Study Craniofacial Strain In-Vitro, Kenneth Kc Ip Jun 2018

The Development Of A Temporomandibular Force Simulator To Study Craniofacial Strain In-Vitro, Kenneth Kc Ip

Electronic Thesis and Dissertation Repository

An in-vitro musculoskeletal loading simulator was developed to replicate the internal forces of mastication, and then employed in a comparison of clinically relevant facial fracture repairs. Muscle forces are simulated by pneumatic pistons via 3D printed mounts that are reverse-engineered from CT scan to match muscle attachment sites, which are adhered to bone in order to simulate native stress distributions. Bite force and bone strain pattern of the craniofacial structure under load were measured using a force sensor and strain gauges respectively. In a series of five fresh-frozen cadaveric heads, it was found that strain patterns of the craniofacial structure ...


Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini Jun 2018

Detection Method Of Subclinical Atherosclerosis Of The Carotid Artery With A Hemodynamics Modeling Approach, Marisa Peressini

Master's Theses and Project Reports

Subclinical atherosclerosis is an important area of research to evaluate stroke risk and predict localization of plaque. The current methods for detecting atherosclerosis risk are insufficient because it is based on The Framingham Risk Score and carotid intima media thickness, therefore an engineering detection model based on quantifiable data is needed. Laminar and turbulent flow, dictated by Reynolds number and relative roughness, was modeled through the carotid artery bifurcation to compare shear stress and shear rate. Computer-aided design and fluid flow software were used to model hemodynamics through the carotid artery. Data from the model was derived from governing equations ...


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman May 2018

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex ...