Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Tissue engineering

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 92

Full-Text Articles in Biomedical Engineering and Bioengineering

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe May 2024

Analyzing Heat Generated From Electro-Osmotic Flow Utilizing Computational Fluid Dynamics, Jordan Elizabeth Grothe

Honors Thesis

Without extensive vascularization, the transfer of fluid and nutrients through human tissue is limited to diffusion and weak interstitial flow. Electroosmosis, or the flow of fluid driven by an electrical field, has become a promising solution. Scientists have begun applying electricity to human tissue to promote stronger interstitial flow; however, optimization of this process has proven to be a challenge due to ohmic heating. Cells function within a small range of temperatures and exposure to voltages exceeding the threshold will cause cells to degrade and die prematurely. This research seeks to better understand and quantify the range of voltage where …


Optimizing Channel Formation In Peg Maleimide Hydrogels, Bakthavachalam Kannadasan Nov 2023

Optimizing Channel Formation In Peg Maleimide Hydrogels, Bakthavachalam Kannadasan

Masters Theses

Blood vessels including the arteries, veins, and capillaries are a critical and indispensable component of various organisms. Some studies estimate that if all the blood vessels present in our body are arranged in line, they would amount to a total length of approximately 60,000 miles. This distance is enough to circle the world two and a half times! In addition to being all pervasive, blood vessels perform certain key functions such as delivery of oxygen and nutrients to various tissues in the body. They also assist in the spread of diseases such as cancer. Therefore, it is important to study …


In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia Aug 2023

In Vitro And In Vivo Diabetic Models For Assessment Of Tissue Engineered Vascular Grafts, Juan Carlos Carrillo Garcia

All Dissertations

Diabetes has become one of the leading causes of lower-limb loss worldwide. Every 30 seconds, a person loses a limb due to diabetic-related vascular complications. About one-third of patients needing lower-limb bypass surgery have debilitated autologous vessels unsuitable for use, and no other good long-term options are available. These detrimental effects on the vasculature are caused mainly by the hyperglycemic and hyperlipidemic conditions derived from diabetes. Under these conditions, an increase in advanced glycation end products (AGEs) and reactive oxygen species leads to irreversible crosslinks of extracellular matrix proteins, accelerating vascular pathology through vascular stiffening, endothelial dysfunction, inflammation, atherosclerosis, fibrosis, …


Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem May 2023

Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem

Boise State University Theses and Dissertations

We investigated the structure – property – processing correlation of graphene bioscaffolds produced using three different methods. Bioscaffolds were prepared by chemical vapor deposition (CVD), sublimation of Silicon Carbide (SiC), and printed solvent assisted exfoliated graphene ink. To gain insight into the roughness and topography of graphene, AFM was performed on each bioscaffold. Raman spectroscopy mapping demonstrated differences in the I2D/IG ratio for each scaffold. Young’s modulus was determined by nanoindentation and indicated that epitaxial graphene had the highest average stiffness, followed by CVD, with printed graphene demonstrating the lowest average stiffness. To investigate the biocompatibility of …


Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack Feb 2023

Development Of A Cell-Based Regenerative Strategy To Modulate Angiogenesis And Inflammation In Ischemic Muscle, Fiona E. Serack

Electronic Thesis and Dissertation Repository

The delivery of human adipose-derived stromal cells (hASCs) to ischemic tissues represents a promising strategy to promote vascular regeneration for patients with critical limb ischemia (CLI). This thesis focused on the evaluation of hydrogels to enhance the retention and pro-angiogenic capacity of hASCs following delivery in vivo. Additionally, priming strategies to augment the paracrine function of hASCs were developed and assessed.

Recognizing the importance of endogenous macrophages in the pro-regenerative function of hASCs, delivery using a previously-developed hydrogel system, composed of peptide-functionalized methacrylated glycol chitosan (MGC-RGD) and a copolymer of poly(ethylene glycol) and poly(trimethylene carbonate) (PEG(PTMC-A)2), was …


Investigation Of Dynamic Culture On Matrix-Derived Microcarriers As A Strategy To Modulate The Pro-Regenerative Phenotype Of Human Adipose-Derived Stromal Cells, Mckenna R. Tosh Jan 2023

Investigation Of Dynamic Culture On Matrix-Derived Microcarriers As A Strategy To Modulate The Pro-Regenerative Phenotype Of Human Adipose-Derived Stromal Cells, Mckenna R. Tosh

Electronic Thesis and Dissertation Repository

Pre-conditioning of adipose-derived stromal cells (ASCs) by tuning the cellular microenvironment during expansion has the potential to modulate their pro-regenerative functionality. The current study investigated the effects of microcarrier composition (decellularized adipose tissue versus collagen), oxygen tension (2% versus ~20% O2) and stirring rate (static, 20, 40 rpm) on human ASCs cultured within spinner flask bioreactors. Dynamic culturing under 20% O2 resulted in more consistent cell growth on both microcarrier substrates, leading to increases in microcarrier contraction and stiffness. Culturing on the microcarriers modulated the hASC immunophenotype, with varying CD90 and CD26 expression levels observed under the …


Bioengineered Scaffolds To Induce Alignment And Promote Axon Regeneration Following Spinal Cord Injury, Kiet Anh Tran Aug 2022

Bioengineered Scaffolds To Induce Alignment And Promote Axon Regeneration Following Spinal Cord Injury, Kiet Anh Tran

Theses and Dissertations

Scaffolds delivered to injured spinal cords to stimulate axon connectivity often act as a bridge to stimulate regeneration at the injured area, but current approaches lack the permissiveness, topology and mechanics to mimic host tissue properties. This dissertation focuses on bioengineering scaffolds through the means of altering topology in injectables and tuning mechanics in 3D-printed constructs as potential therapies for spinal cord injury repair. A self-assembling peptide scaffold, RADA-16I, is used due to its established permissiveness to axon growth and ability to support vascularization. Immunohistochemistry assays verify that vascularized peptide scaffolds promote axon infiltration, attenuate inflammation and reduce astrogliosis. Furthermore, …


Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi Aug 2022

Engineering Of Ideal Systems For The Study And Direction Of Stem Cell Asymmetrical Division And Fate Determination, Martina Zamponi

Biomedical Engineering Theses & Dissertations

The cellular microenvironment varies significantly across tissues, and it is constituted by both resident cells and the macromolecules they are exposed to. Cues that the cells receive from the microenvironment, as well as the signaling transmitted to it, affect their physiology and behavior. This notion is valid in the context of stem cells, which are susceptible to biochemical and biomechanical signaling exchanged with the microenvironment, and which plays a fundamental role in establishing fate determination and cell differentiation events. The definition of the molecular mechanisms that drive stem cell asymmetrical division, and how these are modulated by microenvironmental signaling, is …


A Novel Electroconductive Nanofibrous Scaffold For Bone Regeneration, Mitchell Kenter Jun 2022

A Novel Electroconductive Nanofibrous Scaffold For Bone Regeneration, Mitchell Kenter

Medical Engineering Theses

The goal of this study was to develop a biodegradable and conductive scaffold to mimic the piezoelectric properties of bone and the architecture of the extracellular matrix. Poly(3,4- ethylenedioxythiophene) (PEDOT) is a conductive polymer of great interest in tissue engineering due to excellent electrical stability and biocompatibility. To enhance its conductivity, dopants such as dimethyl sulfoxide (DMSO) can be added. Engineered graphene oxide (GO) can also be introduced as oxidant to enhance conductivity and mechanical properties. PEDOT nanocomposites were synthesized by oxidative polymerization of 3, 4-Etylenedioxythiophene monomer (EDOT) in the presence of GO, DMSO, ferric chloride and various solvents. The …


Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu Mar 2022

Characterizing Mechanical Regulation Of Bone Metastatic Breast Cancer Cells, Boyuan Liu

Doctoral Dissertations

Breast cancer most frequently metastasizes to the skeleton. Bone metastatic cancer is incurable and induces wide-spread bone osteolysis, resulting in significant patient morbidity and mortality. Mechanical stimuli in the skeleton are an important microenvironmental parameter that modulates tumor formation, osteolysis, and tumor cell-bone cell signaling, but which mechanical signals are the most beneficial and the corresponding molecular mechanisms are unknown. This work focused on bone matrix deformation and interstitial fluid flow based on their well-known roles in bone remodeling and in primary breast cancer. The goal of our research was to establish a platform that could define the relationship between …


Characterization Of Tissue-Specific Matrix-Derived Bioscaffolds For Nucleus Pulposus Cell Culture, Marco A. Herrera Quijano Oct 2021

Characterization Of Tissue-Specific Matrix-Derived Bioscaffolds For Nucleus Pulposus Cell Culture, Marco A. Herrera Quijano

Electronic Thesis and Dissertation Repository

Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a novel detergent-free protocol was developed for decellularizing bovine NP tissues that was effective at removing cellular content while preserving key ECM constituents including collagens and glycosaminoglycans. Culture studies showed that 2-D coatings derived from the DNP could support cell attachment but did not maintain or rescue the …


Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed Jul 2021

Synthesis And Performance Testing Of Ecm Fiber Scaffolds, Cassandra Reed

Graduate Theses and Dissertations

The progression of regenerative medicine has advanced the treatment of multiple illnesses and injuries throughout the years. A good example of the benefits of this research is the work that has gone into volumetric muscle loss (VML), where more than 20% of the muscle is loss. Skeletal muscle makes up 40% of the human body so a loss of that size greatly diminishes the strength, the flexibility, physiology, and quality of life of the injured individual. For that reason, various techniques are used to counteract the loss of structure and innate cellular signaling in order to circumvent that from happening. …


Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen May 2021

Evaluating The Effects Of Wood Source On The Physicochemical Properties Of Crosslinked Cellulose Nanocrystals, Helena Tchoungang Nkeumen

Graduate Theses and Dissertations

Cellulose is an abundant and naturally occurring biopolymer that has been used by humans for food, shelter, and clothing for about two centuries now. Highly crystalline nanoparticles derived from cellulose, called cellulose nanocrystals (CNCs), show great potential to meet the rising need for sustainable and nontoxic materials for biomedical applications. However, multiple biomedical applications of CNCs, such as those involving their use in tissue engineering scaffolds, require CNC-based structures to be stable in aqueous environments, a property that native CNCs do not possess due to their inherent hydrophilicity. Chemical crosslinking of CNCs addresses this issue by providing aqueous stability to …


Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Carbon Nanotube-Coated Scaffolds For Tissue Engineering Applications, Soham Dipakbhai Parikh Jan 2021

Carbon Nanotube-Coated Scaffolds For Tissue Engineering Applications, Soham Dipakbhai Parikh

Browse all Theses and Dissertations

Carbon Nanotubes (CNTs) have beneficial properties for cell scaffolding, which has translated into effective growth of bone, muscle, and cardiac cells. However, loose carbon nanotubes can cause in vivo toxicity. To reduce this risk, our team has developed biomimetic scaffolds with multiscale hierarchy where carpet-like CNT arrays are covalently bonded to larger biocompatible substrates. In this study, we have tested such scaffolds in two distinct types of biomedical applications involving glioblastoma and keratinocyte cells. The growth of glioblastoma (GBM) cells on our CNT-coated biomimetic scaffolds was evaluated to check their suitability as a potential chemotherapy-loaded implant for GBM patient treatment. …


Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon Nov 2020

Development Of Water-Soluble Polyesters For Tissue Engineering Applications, Trent Gordon

Electronic Thesis and Dissertation Repository

The development of tunable polymers has become increasingly important for both tissue engineering and drug delivery. This thesis investigates the development of water-soluble polyesters that contain both natural and synthetic components. These polymers offer tunable chemical structures, as well as functional groups for the conjugation of crosslinking moieties or cell signaling molecules. The first series of polymers was synthesized from poly(ethylene glycol) (PEG) and aspartic acid (Asp) via a titanium catalyzed transesterification method to provide polymers with molar masses of 12 kg/mol. After deprotection, the pendent functional groups of Asp were reacted with methacrylic, maleic, and itaconic anhydride to introduce …


Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang May 2020

Mechanical Characterization Of Animal Derived Starting Materials For Tissue Engineering, Bin Zhang

Dissertations

Animal derived starting materials are well established in the production of Tissue Engineered Medical Devices. Porcine specifically can be found in products ranging in application from hernia repair to breast reconstruction. Although this material has been largely accepted in the Tissue Engineering industry, little is known of its material properties and mechanical characteristics. A review of the scientific literature describes limited mechanical measures only on uncontrolled research grade material. The objective of this work is to mechanically characterize porcine starting material used in the medical device industry. Porcine skin is provided by Midwest Research Swine, LLC (MRS) an established supplier …


Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin Feb 2020

Extracellular Matrix-Derived Modular Bioscaffolds For Soft Connective Tissue Regeneration, Pascal Morissette Martin

Electronic Thesis and Dissertation Repository

Human decellularized adipose tissue (DAT) represents a promising extracellular matrix (ECM) source for the development of biomaterials, with its properties conductive of angiogenesis, adipogenesis, and scaffold remodelling. This thesis sought to provide new fundamental insight into the design of ECM-derived bioscaffolds by developing novel modular biomaterials for soft connective tissue regeneration and by studying the effects of ECM composition on cell function and fate.

Initial studies explored the effects of ECM composition of pre-assembled bead foams derived from DAT or commercially-sourced bovine collagen (COL) on human wound edge dermal fibroblasts (weDFs) sourced from chronic wounds. In vitro testing under conditions …


Bioadhesive Hydrogel Composite Cell Carrier For The Repair Of The Degenerated Intervertebral Disc, Thomas Richard Christiani Jan 2020

Bioadhesive Hydrogel Composite Cell Carrier For The Repair Of The Degenerated Intervertebral Disc, Thomas Richard Christiani

Theses and Dissertations

Lower back pain (LBP) affects the worldwide population and can be attributed to the degeneration of the intervertebral disc (IVD). The IVD is composed of a central nucleus pulposus (NP), a peripheral annulus fibrosus (AF), and adjacent cartilage endplates (CEPs). IVD degeneration is characterized by proteoglycan loss, tissue dehydration, and decreased hydrostatic pressure. In this work, the use of an injectable bioadhesive hydrogel composite for replacement of the degenerated NP was investigated.

Results indicate that the composite exhibits similar mechanical properties to the NP, adheres to AF tissue, and supports encapsulated mesenchymal stem cell (MSC) differentiation toward an NP-like phenotype …


The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology and immunohistochemistry. …


Controlling Strain Energy Density In 3d Cellular Collagen Constructs During Complex Loads, Katherine Hollar Dec 2019

Controlling Strain Energy Density In 3d Cellular Collagen Constructs During Complex Loads, Katherine Hollar

Boise State University Theses and Dissertations

Mechanical stimulation applied to damaged soft tissues, such as ligament, can promote tissue remodeling to accelerate healing. To help identify treatments that encourage ligament healing, bioreactors have been designed to subject 3D cellularized constructs to various loading conditions in order to determine the mechanical mechanisms that trigger cell-mediated repair. An innovative approach is to use a bioreactor to apply controlled states of biaxial stress to study the effects of strain energy density and distortion energy on cell activity. Tissue distortion has been linked to changes in the structure and function of ligament, yet the specific impact of distortion energy on …


Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Graduate Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further hinder …


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Graduate Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent degradation …


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli Jan 2019

Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli

Williams Honors College, Honors Research Projects

Worldwide incidence of bone disorders and conditions, an already prevalent problem, is expected to double by 2020 from the rate in 2013 due to factors such as higher life expectancies and lower levels of physical activity. Every year in the United States, over half a million patients receive bone defect repairs, with costs greater than $2.5 billion. Current repairs are typically done with bone grafts, which are often costly and can result in added complications in the donor surgical site. Tissue engineering, a growing field that seeks to assist and enhance tissue defect repairs through the use of synthetic materials, …


Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi Jul 2018

Developmental Steps For A Functional Three-Dimensional Cell Culture System For The Study Of Asymmetrical Division Of Neural Stem Cells, Martina Zamponi

Biomedical Engineering Theses & Dissertations

Stem cells are a cell type present during and following development, which possess self- renewal properties, as well as the ability to differentiate into specific cells. Asymmetrical division is the cellular process that allows stem cells to produce one differentiated and one un-differentiated daughter cell during the same mitotic event. Insights in the molecular mechanisms of such process are minimal, due to the absence of effective methods for its targeted study. Currently, traditional methods of investigation include monolayer cell culture and animal models. The first poses structural limitations to the accurate representation of human tissue and cell structures, while animal …


Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone Jun 2018

Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone

Electronic Thesis and Dissertation Repository

Tissue engineering scaffolds should support tissue maturation through exposure to biologically relevant stimuli and through successful cell infiltration. External electrical stimulation is particularly relevant for cardiac and neural applications, and requires conductive scaffolds to propagate electrical signals; cell infiltration is only possible with scaffolds that have sufficient porosity. The aim of this study was to impart conductivity and increased porosity of electrospun poly(ester amide) (PEA) scaffolds. Reduced graphene oxide (rGO) was incorporated into blend PEA and coaxial PEA-chitosan fibrous scaffolds, which increased scaffold conductivity and supported cardiac differentiation. The novel combination of ultrasonication and leaching of a sacrificial polymer was …


3d Bioprinting Systems For The Study Of Mammary Development And Tumorigenesis, John Reid Apr 2018

3d Bioprinting Systems For The Study Of Mammary Development And Tumorigenesis, John Reid

Electrical & Computer Engineering Theses & Dissertations

Understanding the microenvironmental factors that control cell function, differentiation, and stem cell renewal represent the forefront of developmental and cancer biology. To accurately recreate and model these dynamic interactions in vitro requires both precision-controlled deposition of multiple cell types and well-defined three-dimensional (3D) extracellular matrix (ECM). To achieve this goal, we hypothesized that accessible bioprinting technology would eliminate the experimental inconsistency and random cell-organoid formation associated with manual cell-matrix embedding techniques commonly used for 3D, in vitro cell cultures. The first objective of this study was to adapt a commercially-available, 3D printer into a 3D bioprinter. Goal-based computer simulations were …


Osteon Mimetic Scaffolding, Janay Clytus Apr 2018

Osteon Mimetic Scaffolding, Janay Clytus

Senior Theses

The purpose of this research is to provide an alternative to naturally derived bone grafts. There is a gap in the supply of donors and the demand of bone tissue. Artificial scaffold creation can work as an implant and decrease the shortage of bone grafts and increase the range of injuries that can be repaired. Current research focuses on optimizing mechanical properties such as porosity, improving vascularization using cells, and generating osteoconductivity. For osteodifferentiation, mesenchymal stem cells (MSCs) can differentiate into mesodermal lineages such as chondrocytes, osteoblasts, adipocytes, and tenocytes by supplementing cultures with lineage-specific soluble factors (Marchetti). Co-culturing ECFCs …