Open Access. Powered by Scholars. Published by Universities.®

Medical Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

1,343 Full-Text Articles 4,470 Authors 302,143 Downloads 108 Institutions

All Articles in Medical Biochemistry

Faceted Search

1,343 full-text articles. Page 5 of 53.

Screening Tcf19 And Kif18b To Determine Co-Regulation With Mybl1 In Triple Negative Breast Cancer Patient Tissues, Tyra Sharda Ivory 2022 Texas Southern University

Screening Tcf19 And Kif18b To Determine Co-Regulation With Mybl1 In Triple Negative Breast Cancer Patient Tissues, Tyra Sharda Ivory

Theses (2016-Present)

The aggressive behavior in triple-negative breast cancer (TNBC) is due to genetic signaling events, which call for the comprehensive analyses of genes differentially regulated in the cancers. Our laboratory previously found that MYBL1 was over-expressed in a fraction of the TNBC, compared to some luminal, and other breast cancer subtypes. The MYBL1 gene is a proto-oncogene that serves as a strong transcriptional activator. The gene is involved in signaling events related to cell cycle signaling, differentiation, proliferation, and apoptosis, all which are differentially regulated in cancers. Because MYBL1 is a transcription regulator, involved in cancer-related mechanisms and differentially expressed in …


Glucose Uptake By Glut1 In Photoreceptors Is Essential For Outer Segment Renewal And Rod Photoreceptor Survival, Lauren L. Daniele, John Y.S. Han, Ivy S Samuels, Ravikiran Komirisetty, Nikhil Mehta, Jessica L McCord, Minzhong Yu, Yekai Wang, Kathleen Boesze-Battaglia, Brent A Bell, Jianhai Du, Neal S Peachey, Nancy J. Philp 2022 Thomas Jefferson University

Glucose Uptake By Glut1 In Photoreceptors Is Essential For Outer Segment Renewal And Rod Photoreceptor Survival, Lauren L. Daniele, John Y.S. Han, Ivy S Samuels, Ravikiran Komirisetty, Nikhil Mehta, Jessica L Mccord, Minzhong Yu, Yekai Wang, Kathleen Boesze-Battaglia, Brent A Bell, Jianhai Du, Neal S Peachey, Nancy J. Philp

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or …


Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang 2022 University of Karachi

Synthesis And Evaluation Of Anti-Hiv Activity Of Mono- And Di-Substituted Phosphonamidate Conjugates Of Tenofovir, Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui, Keykavous Parang

Pharmacy Faculty Articles and Research

The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several …


Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan 2022 Chapman University

Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

n this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the …


Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry 2022 Thomas Jefferson University

Neuromuscular Junction Pathology Is Correlated With Differential Motor Unit Vulnerability In Spinal And Bulbar Muscular Atrophy, Elana Molotsky, Y Liu, Andrew P Lieberman, Diane E Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. …


Regulating Phase Transition In Neurodegenerative Diseases By Nuclear Import Receptors, Amandeep Girdhar, Lin Guo 2022 Thomas Jefferson University

Regulating Phase Transition In Neurodegenerative Diseases By Nuclear Import Receptors, Amandeep Girdhar, Lin Guo

Department of Biochemistry and Molecular Biology Faculty Papers

RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on …


An Rtn4/Nogo-A-Interacting Micropeptide Modulates Synaptic Plasticity With Age, S. Kragness, Z. Clark, A. Mullin, J. Guidry, L. R. Earls 2022 Tulane University

An Rtn4/Nogo-A-Interacting Micropeptide Modulates Synaptic Plasticity With Age, S. Kragness, Z. Clark, A. Mullin, J. Guidry, L. R. Earls

School of Medicine Faculty Publications

Micropeptides, encoded from small open reading frames of 300 nucleotides or less, are hidden throughout mammalian genomes, though few functional studies of micropeptides in the brain are published. Here, we describe a micropeptide known as the Plasticity–Associated Neural Transcript Short (Pants), located in the 22q11.2 region of the human genome, the microdeletion of which conveys a high risk for schizophrenia. Our data show that Pants is upregulated in early adulthood in the mossy fiber circuit of the hippocampus, where it exerts a powerful negative effect on long-term potentiation (LTP). Further, we find that Pants is secreted from neurons, where it …


Recognition Of The Tdp-43 Nuclear Localization Signal By Importin Α1/Β, Steven G Doll, Hamed Meshkin, Alexander J Bryer, Fenglin Li, Ying-Hui Ko, Ravi K Lokareddy, Richard E Gillilan, Kushol Gupta, Juan R Perilla, Gino Cingolani 2022 Thomas Jefferson University

Recognition Of The Tdp-43 Nuclear Localization Signal By Importin Α1/Β, Steven G Doll, Hamed Meshkin, Alexander J Bryer, Fenglin Li, Ying-Hui Ko, Ravi K Lokareddy, Richard E Gillilan, Kushol Gupta, Juan R Perilla, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

Cytoplasmic mislocalization of the TAR-DNA binding protein of 43 kDa (TDP-43) leads to large, insoluble aggregates that are a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we study how importin α1/β recognizes TDP-43 bipartite nuclear localization signal (NLS). We find that the NLS makes extensive contacts with importin α1, especially at the minor NLS-binding site. NLS binding results in steric clashes with the C terminus of importin α1 that disrupts the TDP-43 N-terminal domain (NTD) dimerization interface. A putative phosphorylation site in the proximity of TDP-43 R83 at the minor NLS site destabilizes binding to importins by reducing …


Channelopathy Of Small- And Intermediate-Conductance Ca2+-Activated K+ Channels, Young-Woo Nam, Miles Downey, Mohammad Asikur Rahman, Meng Cui, Miao Zhang 2022 Chapman University

Channelopathy Of Small- And Intermediate-Conductance Ca2+-Activated K+ Channels, Young-Woo Nam, Miles Downey, Mohammad Asikur Rahman, Meng Cui, Miao Zhang

Pharmacy Faculty Articles and Research

Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for K …


Genomic Features Underlie The Co-Option Of Sva Transposons As Cis-Regulatory Elements In Human Pluripotent Stem Cells, Samantha M Barnada, Andrew Isopi, Daniela Tejada-Martinez, Clément Goubert, Sruti Patoori, Luca Pagliaroli, Mason Tracewell, Marco Trizzino 2022 Thomas Jefferson University

Genomic Features Underlie The Co-Option Of Sva Transposons As Cis-Regulatory Elements In Human Pluripotent Stem Cells, Samantha M Barnada, Andrew Isopi, Daniela Tejada-Martinez, Clément Goubert, Sruti Patoori, Luca Pagliaroli, Mason Tracewell, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Domestication of transposable elements (TEs) into functional cis-regulatory elements is a widespread phenomenon. However, the mechanisms behind why some TEs are co-opted as functional enhancers while others are not are underappreciated. SINE-VNTR-Alus (SVAs) are the youngest group of transposons in the human genome, where ~3,700 copies are annotated, nearly half of which are human-specific. Many studies indicate that SVAs are among the most frequently co-opted TEs in human gene regulation, but the mechanisms underlying such processes have not yet been thoroughly investigated. Here, we leveraged CRISPR-interference (CRISPRi), computational and functional genomics to elucidate the genomic features that underlie SVA domestication …


Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu 2022 University of Michigan - Ann Arbor

Lysosomal Zn 2+ Release Triggers Rapid, Mitochondria-Mediated, Non-Apoptotic Cell Death In Metastatic Melanoma, Wanlu Du, Mingxue Gu, Meiqin Hu, Timothy Nold, Prateeksunder Pinchi, Wei Chen, Michael Ryan, Ahmed Bannaga, Haoxing Xu

Medical Student Research Symposium

During tumor progression, lysosome function is often maladaptively upregulated to match the high energy demand required for cancer cell hyper-proliferation and invasion. Here, we report that mucolipin TRP channel 1 (TRPML1), a lysosomal Ca2+ and Zn2+ release channel that regulates multiple aspects of lysosome function, is dramatically upregulated in metastatic melanoma cells compared with normal cells. TRPML-specific synthetic agonists (ML-SAs) are sufficient to induce rapid (within hours) lysosomal Zn2+-dependent necrotic cell death in metastatic melanoma cells while completely sparing normal cells. ML-SA-caused mitochondria swelling and dysfunction lead to cellular ATP depletion. While pharmacological inhibition or genetic silencing of TRPML1 in …


Intrabody-Mediated Postsynaptic Recruitment Of Camkiiα Improves Memory, Anthony Chifor, Jeongyoon Choi Dr., Joongkyu Park Dr. 2022 Wayne State University

Intrabody-Mediated Postsynaptic Recruitment Of Camkiiα Improves Memory, Anthony Chifor, Jeongyoon Choi Dr., Joongkyu Park Dr.

Medical Student Research Symposium

Long-term potentiation (LTP), the selective strengthening of specific synapses based on recent activity, has widely been accepted as the biological mechanism responsible for learning and memory. N-methyl-D-aspartate receptors (NMDARs) play a critical role in LTP, which when activated, result in a surge of postsynaptic intracellular calcium levels. The calcium rise during LTP results in the activation of Ca2+/calmodulin-dependent kinase II alpha (CaMKIIa), which consequently enacts multiple cellular effects that ultimately result in the strengthening of synaptic connections. Previous work has examined the effects of CaMKIIa overexpression in rat hippocampi on spatial memory, however, significant but limited improvement in …


Antigen Staining For Detection Of Muc13 And Muc16 Expression In Carcinoma Tissue, Jose A. Benitez 2022 The University of Texas Rio Grande Valley

Antigen Staining For Detection Of Muc13 And Muc16 Expression In Carcinoma Tissue, Jose A. Benitez

MEDI 9331 Scholarly Activities Clinical Years

MUC13 and MUC16 are epithelial expressed proteins implicated in various carcinomas. Overexpression of these biomarkers appear to play a role in tumor growth; this discovery has paved a road for multiple studies discussing the potential of targeting mucin proteins and optimize immunotherapy approaches against carcinomas. Our study serves to investigate the level of expression of MUC13 and MUC16 in cancerous and normal tissue and to discuss the implications our findings may have for the utilization of these biomarkers for cancer therapy.


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani 2022 Institute for Advanced Studies in Basic Sciences, Iran

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection …


Alternate Site Pacing And The Impact On Intracellular Calcium Handling During The Post-Extrasystolic Cardiac Cycle, Kent Ozcan, Lawrence Mulligan 2022 Rowan University

Alternate Site Pacing And The Impact On Intracellular Calcium Handling During The Post-Extrasystolic Cardiac Cycle, Kent Ozcan, Lawrence Mulligan

Rowan-Virtua Research Day

Objective: Previous work has shown that alternate site (RV apex) results in myocardial dysfunction. With the development of tools to place endocardial pacing leads in locations that create physiological pacing activation, we sought to evaluate how ventricular trans-septal or left ventricular apical placement pacing differs from right atrial pacing. We will evaluate how these chronic pacing modes impact the PR and RF at baseline, 0, and 16 weeks in the canine heart.

Methods: Quantitative analysis will be performed on previously generated data. The data set includes pacing of 15 dogs total (8 with trans-septal leads & 7 with left ventricular …


Knockdown Of C. Elegans Nad Kinases Nadk-1 Or Nadk-2 Induces An Antioxidant Response Without Affecting Lifespan, Henry Gong 2022 East Tennessee State University

Knockdown Of C. Elegans Nad Kinases Nadk-1 Or Nadk-2 Induces An Antioxidant Response Without Affecting Lifespan, Henry Gong

Electronic Theses and Dissertations

Nearly all multicellular organisms show changes in redox balance with aging leading to oxidative damage of macromolecules. This study investigated the role of the [NADP+]/[NADPH] redox couple in aging. This redox couple plays an important role in maintaining tissue redox balance and becomes slightly more oxidized in aged tissues. NADPH is a major source of reducing equivalents for enzymes that detoxify hydrogen peroxide. However, catalase detoxifies hydrogen peroxide independently of NADPH. But catalase is absent from mitochondria, a major source of hydrogen peroxide, where instead glutathione plays the major role in hydrogen peroxide detoxification in an NADPH-dependent manner. …


Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw 2022 The Texas Medical Center Library

Mechanism Of Rare Variant In Acta2, P.Arg149cys, Driving Diverse Vascular Disease, Kaveeta Kaw

Dissertations & Theses (Open Access)

Heterozygous variants in ACTA2 (smooth muscle (SM) α-actin) predispose to thoracic aortic aneurysms and dissections (TAAD) and early-onset coronary artery disease (CAD). The most common ACTA2 mutation is a genetic alteration of arginine 149 to a cysteine, ACTA2 p.Arg149Cys, which accounts for disease in 24% of all ACTA2 mutation carriers.(1) ACTA2 p.Arg149Cys mutation carriers present with either TAAD or CAD but rarely have both diseases. To identify the molecular mechanisms dictating whether an individual with ACTA2 p.Arg149Cys develops TAAD or CAD, CRISPR/Cas9 technology was used to generate the mutant mouse, Acta2R149C/+, in a C57BL6 background. Acta2R149C/+ mice …


Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer., Richard Fu 2022 University of South Alabama

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer., Richard Fu

Poster Presentations

Honors thesis poster presentation.

RAS, one of the most prevalent oncogenes, is mutated in 27% of human cancers. Gainof- function RAS mutations activate multiple downstream pathways, including the RASRAF- MEK-ERK and PI3K/AKT/mTOR pathways, which are critical in tumorigenesis and cancer cell proliferation. The RAS proteins KRAS, HRAS, and NRAS along with their downstream effectors are attractive targets for cancer therapy since they act as frequent drivers in lung, colorectal, and pancreatic cancers. However, RAS proteins have relatively smooth surfaces that lack traditional binding pockets, making inhibitors specific to RAS difficult to create. Recently, a novel small molecule pan-RAS inhibitor named …


Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu 2022 University of South Alabama

Applying Mci-062, A Novel Pan-Ras Inhibitor, To Treat Kras-Mutant Lung Cancer, Richard Fu

Honors Theses

RAS is a prevalent oncogene that is mutated in 27% of human cancers. Gain-of-function RAS mutations activate multiple downstream pathways, including the RAS-RAF-MEK-ERK and PI3K/AKT/mTOR pathways, which are critical in tumorigenesis and cancer cell proliferation. RAS proteins such as KRAS, a member of the RAS protein family, and their downstream effectors are attractive targets for cancer therapy since their mutations act as frequent drivers in lung, colorectal, and pancreatic cancers. However, RAS proteins have relatively smooth surfaces that lack traditional binding pockets, making inhibitors specific to RAS difficult to create. Recently, a novel small molecule pan-RAS inhibitor named MCI-062 was …


Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor 2022 St. Jude Children's Research Hospital

Heterozygous Frameshift Variants In Hnrnpa2b1 Cause Early-Onset Oculopharyngeal Muscular Dystrophy, Hong Joo Kim, Payam Mohassel, Sandra Donkervoort, Lin Guo, Kevin O'Donovan, Maura Coughlin, Xaviere Lornage, Nicola Foulds, Simon R Hammans, A Reghan Foley, Charlotte M Fare, Alice F Ford, Masashi Ogasawara, Aki Sato, Aritoshi Iida, Pinki Munot, Gautam Ambegaonkar, Rahul Phadke, Dominic G O'Donovan, Rebecca Buchert, Mona Grimmel, Ana Töpf, Irina T Zaharieva, Lauren Brady, Ying Hu, Thomas E Lloyd, Andrea Klein, Maja Steinlin, Alice Kuster, Sandra Mercier, Pascale Marcorelles, Yann Péréon, Emmanuelle Fleurence, Adnan Manzur, Sarah Ennis, Rosanna Upstill-Goddard, Luca Bello, Cinzia Bertolin, Elena Pegoraro, Leonardo Salviati, Courtney E French, Andriy Shatillo, F Lucy Raymond, Tobias B Haack, Susana Quijano-Roy, Johann Böhm, Isabelle Nelson, Tanya Stojkovic, Teresinha Evangelista, Volker Straub, Norma B Romero, Jocelyn Laporte, Francesco Muntoni, Ichizo Nishino, Mark A Tarnopolsky, James Shorter, Carsten G Bönnemann, J Paul Taylor

Department of Biochemistry and Molecular Biology Faculty Papers

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift …


Digital Commons powered by bepress