Open Access. Powered by Scholars. Published by Universities.®

Medical Molecular Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,130 Full-Text Articles 4,636 Authors 211,100 Downloads 81 Institutions

All Articles in Medical Molecular Biology

Faceted Search

1,130 full-text articles. Page 11 of 50.

Protein Misfolding Toxicity And Inclusion Formation In Cellular Models Of Neurodegeneration, Sonja E. Di Gregorio 2021 The University of Western Ontario

Protein Misfolding Toxicity And Inclusion Formation In Cellular Models Of Neurodegeneration, Sonja E. Di Gregorio

Electronic Thesis and Dissertation Repository

Protein misfolding characterizes most neurodegenerative diseases. Protein misfolding is the conversion of specific proteins from their normal, often soluble, and native three-dimensional conformation into an aberrant, often insoluble, non-functional conformation. Protein inclusions and aggregates are among the major pathological hallmarks of protein misfolding associated with many neurodegenerative diseases. Yet, the role of aggregates and inclusions is not clearly defined and heavily debated. This study utilizes powerful genetic approaches in yeast and verification in mammalian neuronal cell lines to address the misfolding and toxicity of three proteins, the Rho Guanine Nucleotide Exchange Factor (RGNEF), Matrin3, which are involved in amyotrophic lateral …


Hiv-1 Drug Resistance To Integrase Strand Transfer Inhibitors In Hiv-1 Non-B Subtypes, Emmanuel Ndashimye 2021 The University of Western Ontario

Hiv-1 Drug Resistance To Integrase Strand Transfer Inhibitors In Hiv-1 Non-B Subtypes, Emmanuel Ndashimye

Electronic Thesis and Dissertation Repository

Human immunodeficiency syndrome (HIV-1) has infected over 75 million people and over 35 million have succumbed to virus related illnesses. Despite access to a variety of antiretroviral therapy (ART) options, ART programs have been disproportionally spread in the world with low-and middle-income countries (LMICs) facing challenges to access the most potent ART options. With less potent ART remaining in use in LMICs, HIV-1 drug resistance (HIVDR) presents a growing challenge in LMICs. Since approval of the first-generation integrase strand transfer inhibitor (INSTIs), Raltegravir (RAL) in 2007, INSTIs remain the best choice as a backbone of ART. Access to second generation …


Implications Of The Quantum Dna Model For Information Sciences, F. Matthew Mihelic 2021 University of Tennessee Health Science Center

Implications Of The Quantum Dna Model For Information Sciences, F. Matthew Mihelic

Faculty Publications

The DNA molecule can be modeled as a quantum logic processor, and this model has been supported by pilot research that experimentally demonstrated non-local communication between cells in separated cell cultures. This modeling and pilot research have important implications for information sciences, providing a potential architecture for quantum computing that operates at room temperature and is scalable to millions of qubits, and including the potential for an entanglement communication system based upon the quantum DNA architecture. Such a system could be used to provide non-local quantum key distribution that could not be blocked by any shielding or water depth, would …


Magnetic Vector Potential Manipulation Of Majorana Fermions In Dna Quantum Logic, F. Matthew Mihelic 2021 University of Tennessee Health Science Center

Magnetic Vector Potential Manipulation Of Majorana Fermions In Dna Quantum Logic, F. Matthew Mihelic

Faculty Publications

In the quantum logic of the DNA molecule, electrons are held and conducted coherently as spinless Cooper pairs and are shielded from electromagnetic energy by a Faraday cage effect of the double lipid bilayer of the nuclear membrane. The magnetic vector potential generated by cellular depolarization can synchronize logical activity in portions of the DNA molecule by affecting spin directions of appropriately oriented spinless electrons via the Aharonov-Bohm effect, but is not blocked by that Faraday cage effect. Within the logically and thermodynamically reversible chiral enantiomeric symmetry of the deoxyribose moieties the decoherent transition of Cooper pair to Dirac pair …


Trna Regulation In Humans: The Cellular Effect Of A Pathological Hars Y454s Mutation, Rosan Kenana 2021 The University of Western Ontario

Trna Regulation In Humans: The Cellular Effect Of A Pathological Hars Y454s Mutation, Rosan Kenana

Electronic Thesis and Dissertation Repository

tRNAs are the adapter molecules involved in translating the genetic code into functional protein in a living cell. tRNAs are charged with their cognate amino acids - by aminoacyl-tRNA synthetases (aaRS or ARS) - which are then transferred to a growing peptide in a process called mRNA translation. The efficiency of translation is dependent on the ratio of ARS enzymes to their cognate tRNAs and the availability of correctly amino acylated tRNAs. Disruptions of this process, caused by mutations in ARS genes, in particular, have been linked to complex inherited diseases. USH3B syndrome, a recessively inherited disorder among consanguineous families …


The Heme-Regulated Inhibitor Pathway Modulates Susceptibility Of Poor Prognosis B-Lineage Acute Leukemia To Bh3-Mimetics, Kaitlyn Hill Smith 2021 University of Tennessee Health Science Center

The Heme-Regulated Inhibitor Pathway Modulates Susceptibility Of Poor Prognosis B-Lineage Acute Leukemia To Bh3-Mimetics, Kaitlyn Hill Smith

Theses and Dissertations (ETD)

Anti-apoptotic MCL1 is one of the most frequently amplified genes in human cancers and its elevated expression confers resistance to many therapeutics including the BH3-mimetic agents ABT-199 and ABT-263. The anti-malarial, dihydroartemisinin (DHA) translationally represses MCL-1 and synergizes with BH3-mimetics. To explore how DHA represses MCL-1, a genome-wide CRISPR screen identified that loss of genes in the heme synthesis pathway renders mouse BCR-ABL+ B-ALL cells resistant to DHA-induced death. Mechanistically, DHA disrupts the interaction between heme and the eIF2α kinase heme regulated inhibitor (HRI) triggering the integrated stress response. Genetic ablation of Eif2ak1, which encodes HRI, blocks MCL-1 repression in …


A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski 2021 Rowan University

A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski

Graduate School of Biomedical Sciences Theses and Dissertations

Acyl-CoA cholesterol acyl transferase related enzyme-2 required for viability 1 (ARV1) was first recognized in Saccharomyces cerevisiae in a study done in 2000 by Tinkelenberg et al. In yeast, the deletion of ARV1 results in numerous defects including abnormal sterol trafficking [1], the reduction of sphingolipid metabolism [2], synthesis of glycosylphosphatidylinositol (GPI) anchor [3], ER stress [4], and hypersensitivity of fatty acids leading to lipoapoptosis [5]. Arv1 germline deletion in mice displayed a lean phenotype with increased energy [6]. In humans, ARV1 mutations lead to epileptic encephalopathy [7].

Non-alcoholic fatty liver disease (NAFLD) consists of simple steatosis to non-alcoholic steatohepatitis …


Therapeutic Potential Of Trp Channels In The Targeting Of Rheumatoid Arthritis Synovial Fibroblasts, Brittany Isabella Schwam 2021 University of Tennessee Health Science Center

Therapeutic Potential Of Trp Channels In The Targeting Of Rheumatoid Arthritis Synovial Fibroblasts, Brittany Isabella Schwam

Theses and Dissertations (ETD)

Rheumatoid arthritis is a chronic inflammatory disease primarily affecting the synovium, articular cartilage, and bone within a joint, but it is a unique form of arthritis wherein effects are systemic. The cause of this autoimmune disease remains unknown, but there are many environmental and genetic factors that play into susceptibility. Research is still far from drug-free remission despite great advancements over the past few decades. The majority of therapies developed rely on immunosuppressant or immunomodulator molecules and come with risk of infection, high costs, and toxic, uncontrolled side effects. Those diagnosed maintain a significant unmet need for targeted therapies.

There …


St6galnac-I Promotes Lung Cancer Metastasis By Altering Muc5ac Sialylation, Imayavaramban Lakshmanan, Sanjib Chaudhary, Raghupathy Vengoji, Parthasarathy Seshacharyulu, Satyanarayana Rachagani, Joseph Carmicheal, Rahat Jahan, Pranita Atri, Ramakanth C. Venkata, Rohitesh Gupta, Saravanakumar Marimuthu, Naveenkumar Perumal, Sanchita Rauth, Sukhwinder Kaur, Kavita Mallya, Lynette M. Smith, Subodh M. Lele, Moorthy P. Ponnusamy, Mohd W. Nasser, Ravi Salgia, Surinder K. Batra, Apar Kishor Ganti 2021 University of Nebraska Medical Center

St6galnac-I Promotes Lung Cancer Metastasis By Altering Muc5ac Sialylation, Imayavaramban Lakshmanan, Sanjib Chaudhary, Raghupathy Vengoji, Parthasarathy Seshacharyulu, Satyanarayana Rachagani, Joseph Carmicheal, Rahat Jahan, Pranita Atri, Ramakanth C. Venkata, Rohitesh Gupta, Saravanakumar Marimuthu, Naveenkumar Perumal, Sanchita Rauth, Sukhwinder Kaur, Kavita Mallya, Lynette M. Smith, Subodh M. Lele, Moorthy P. Ponnusamy, Mohd W. Nasser, Ravi Salgia, Surinder K. Batra, Apar Kishor Ganti

Journal Articles: Biochemistry & Molecular Biology

Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis is poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models- KrasG12D ;Trp53R172H/+ ;Ad-Cre (KPA) and KrasG12D ; Ad-Cre (KA). Survival analysis showed significantly (P=0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of St6galnac-I in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which …


Amyloid Precursor-Like Protein 2 Expression Increases During Pancreatic Cancer Development And Shortens The Survival Of A Spontaneous Mouse Model Of Pancreatic Cancer., Brittany J. Poelaert, Shelby M. Knoche, Alaina C. Larson, Poomy Pandey, Parthasarathy Seshacharyulu, Nuzhat Khan, H. Carlo Maurer, Kenneth P. Olive, Yuri Sheinin, Rizwan Ahmad, Amar B. Singh, Surinder K. Batra, Satyanarayana Rachagani, Joyce C. Solheim 2021 University of Nebraska Medical Center

Amyloid Precursor-Like Protein 2 Expression Increases During Pancreatic Cancer Development And Shortens The Survival Of A Spontaneous Mouse Model Of Pancreatic Cancer., Brittany J. Poelaert, Shelby M. Knoche, Alaina C. Larson, Poomy Pandey, Parthasarathy Seshacharyulu, Nuzhat Khan, H. Carlo Maurer, Kenneth P. Olive, Yuri Sheinin, Rizwan Ahmad, Amar B. Singh, Surinder K. Batra, Satyanarayana Rachagani, Joyce C. Solheim

Journal Articles: Biochemistry & Molecular Biology

In the United States, pancreatic cancer is a major cause of cancer-related deaths. Although substantial efforts have been made to understand pancreatic cancer biology and improve therapeutic efficacy, patients still face a bleak chance of survival. A greater understanding of pancreatic cancer development and the identification of novel treatment targets are desperately needed. Our analysis of gene expression data from patient samples showed an increase in amyloid precursor-like protein 2 (APLP2) expression within primary tumor epithelium relative to pancreatic intraepithelial neoplasia (PanIN) epithelial cells. Augmented expression of APLP2 in primary tumors compared to adjacent stroma was also observed. Genetically engineered …


Rna-Based Therapies: A Cog In The Wheel Of Lung Cancer Defense, Parvez Khan, Jawed A. Siddiqui, Imayavaramban Lakshmanan, Apar Kishor Ganti, Ravi Salgia, Maneesh Jain, Surinder K. Batra, Mohd W. Nasser 2021 University of Nebraska Medical Center

Rna-Based Therapies: A Cog In The Wheel Of Lung Cancer Defense, Parvez Khan, Jawed A. Siddiqui, Imayavaramban Lakshmanan, Apar Kishor Ganti, Ravi Salgia, Maneesh Jain, Surinder K. Batra, Mohd W. Nasser

Journal Articles: Biochemistry & Molecular Biology

Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory …


The Mwtab Python Library For Restful Access And Enhanced Quality Control, Deposition, And Curation Of The Metabolomics Workbench Data Repository, Christian D. Powell, Hunter N. B. Moseley 2021 University of Kentucky

The Mwtab Python Library For Restful Access And Enhanced Quality Control, Deposition, And Curation Of The Metabolomics Workbench Data Repository, Christian D. Powell, Hunter N. B. Moseley

Markey Cancer Center Faculty Publications

The Metabolomics Workbench (MW) is a public scientific data repository consisting of experimental data and metadata from metabolomics studies collected with mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. MW has been constantly evolving; updating its ‘mwTab’ text file format, adding a JavaScript Object Notation (JSON) file format, implementing a REpresentational State Transfer (REST) interface, and nearly quadrupling the number of datasets hosted on the repository within the last three years. In order to keep up with the quickly evolving state of the MW repository, the ‘mwtab’ Python library and package have been continuously updated to mirror the changes …


Polθ Promotes The Repair Of 5'-Dna-Protein Crosslinks By Microhomology-Mediated End-Joining, Gurushankar Chandramouly, Shuren Liao, Timur Rusanov, Nikita Borisonnik, Marissa L Calbert, Tatiana Kent, Katherine Sullivan-Reed, Umeshkumar Vekariya, Ekaterina Kashkina, Tomasz Skorski, Hong Yan, Richard T Pomerantz 2021 Thomas Jefferson University

Polθ Promotes The Repair Of 5'-Dna-Protein Crosslinks By Microhomology-Mediated End-Joining, Gurushankar Chandramouly, Shuren Liao, Timur Rusanov, Nikita Borisonnik, Marissa L Calbert, Tatiana Kent, Katherine Sullivan-Reed, Umeshkumar Vekariya, Ekaterina Kashkina, Tomasz Skorski, Hong Yan, Richard T Pomerantz

Department of Biochemistry and Molecular Biology Faculty Papers

DNA polymerase θ (Polθ) confers resistance to chemotherapy agents that cause DNA-protein crosslinks (DPCs) at double-strand breaks (DSBs), such as topoisomerase inhibitors. This suggests Polθ might facilitate DPC repair by microhomology-mediated end-joining (MMEJ). Here, we investigate Polθ repair of DSBs carrying DPCs by monitoring MMEJ in Xenopus egg extracts. MMEJ in extracts is dependent on Polθ, exhibits the MMEJ repair signature, and efficiently repairs 5' terminal DPCs independently of non-homologous end-joining and the replisome. We demonstrate that Polθ promotes the repair of 5' terminal DPCs in mammalian cells by using an MMEJ reporter and find that Polθ confers resistance to …


Genome-Wide Association Meta-Analysis Identifies Pleiotropic Risk Loci For Aerodigestive Squamous Cell Cancers, Corina Lesseur, Aida Ferreiro-Iglesias, James D. McKay, Yohan Bossé, Mattias Johansson, Valerie Gaborieau, Maria Teresa Landi, David C. Christiani, Neil C. Caporaso, Stig E. Bojesen, Christopher I. Amos, Sanjay Shete, Geoffrey Liu, Gadi Rennert, Demetrius Albanes, Melinda C. Aldrich, Adonina Tardon, Chu Chen, Liloglou Triantafillos, John K. Field, Susanne Arnold 2021 World Health Organization

Genome-Wide Association Meta-Analysis Identifies Pleiotropic Risk Loci For Aerodigestive Squamous Cell Cancers, Corina Lesseur, Aida Ferreiro-Iglesias, James D. Mckay, Yohan Bossé, Mattias Johansson, Valerie Gaborieau, Maria Teresa Landi, David C. Christiani, Neil C. Caporaso, Stig E. Bojesen, Christopher I. Amos, Sanjay Shete, Geoffrey Liu, Gadi Rennert, Demetrius Albanes, Melinda C. Aldrich, Adonina Tardon, Chu Chen, Liloglou Triantafillos, John K. Field, Susanne Arnold

Markey Cancer Center Faculty Publications

Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta< 5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown …


Sitosterolemia: Twenty Years Of Discovery Of The Function Of Abcg5abcg8, Kori Williams, Allison Segard, Gregory A. Graf 2021 University of Kentucky

Sitosterolemia: Twenty Years Of Discovery Of The Function Of Abcg5abcg8, Kori Williams, Allison Segard, Gregory A. Graf

Pharmaceutical Sciences Faculty Publications

Sitosterolemia is a lipid disorder characterized by the accumulation of dietary xenosterols in plasma and tissues caused by mutations in either ABCG5 or ABCG8. ABCG5 ABCG8 encodes a pair of ABC half transporters that form a heterodimer (G5G8), which then traffics to the surface of hepatocytes and enterocytes and promotes the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. We review the literature from the initial description of the disease, the discovery of its genetic basis, current therapy, and what has been learned from animal, cellular, and molecular investigations of the transporter in the twenty …


The Evolutionary Conserved Swi/Snf Subunits Arid1a And Arid1b Are Key Modulators Of Pluripotency And Cell-Fate Determination, Luca Pagliaroli, Marco Trizzino 2021 Thomas Jefferson University

The Evolutionary Conserved Swi/Snf Subunits Arid1a And Arid1b Are Key Modulators Of Pluripotency And Cell-Fate Determination, Luca Pagliaroli, Marco Trizzino

Department of Biochemistry and Molecular Biology Faculty Papers

Organismal development is a process that requires a fine-tuned control of cell fate and identity, through timely regulation of lineage-specific genes. These processes are mediated by the concerted action of transcription factors and protein complexes that orchestrate the interaction between cis-regulatory elements (enhancers, promoters) and RNA Polymerase II to elicit transcription. A proper understanding of these dynamics is essential to elucidate the mechanisms underlying developmental diseases. Many developmental disorders, such as Coffin-Siris Syndrome, characterized by growth impairment and intellectual disability are associated with mutations in subunits of the SWI/SNF chromatin remodeler complex, which is an essential regulator of transcription. ARID1B …


Historical Perspective Of The G Protein-Coupled Receptor Kinase Family., Jeffrey L Benovic 2021 Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA

Historical Perspective Of The G Protein-Coupled Receptor Kinase Family., Jeffrey L Benovic

Department of Biochemistry and Molecular Biology Faculty Papers

Agonist activation of G protein-coupled receptors promotes sequential interaction of the receptor with heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. GRKs play a central role in mediating the switch from G protein to arrestin interaction and thereby control processes such as receptor desensitization and trafficking and arrestin-mediated signaling. In this review, I provide a historical perspective on some of the early studies that identified the family of GRKs with a primary focus on the non-visual GRKs. These studies included identification, purification, and cloning of the β-adrenergic receptor kinase in the mid- to late-1980s and subsequent cloning and …


Pirnas As Modulators Of Disease Pathogenesis, Kayla J. Rayford, Ayorinde Cooley, Jelonia T. Rumph, Ashutosh Arun, Girish Rachakonda, Fernando Villalta, Maria F. Lima, Siddharth Pratap, Smita Misra, Pius N. Nde 2021 Meharry Medical College

Pirnas As Modulators Of Disease Pathogenesis, Kayla J. Rayford, Ayorinde Cooley, Jelonia T. Rumph, Ashutosh Arun, Girish Rachakonda, Fernando Villalta, Maria F. Lima, Siddharth Pratap, Smita Misra, Pius N. Nde

Publications and Research

Advances in understanding disease pathogenesis correlates to modifications in gene expression within different tissues and organ systems. In depth knowledge about the dysregulation of gene expression profiles is fundamental to fully uncover mechanisms in disease development and changes in host homeostasis. The body of knowledge surrounding mammalian regulatory elements, specifically regulators of chromatin structure, transcriptional and translational activation, has considerably surged within the past decade. A set of key regulators whose function still needs to be fully elucidated are small non-coding RNAs (sncRNAs). Due to their broad range of unfolding functions in the regulation of gene expression during transcription and …


Mast Cell Involvement In Fibrosis In Chronic Graft-Versus-Host Disease, Ethan Strattan, Gerhard Carl Hildebrandt 2021 University of Kentucky

Mast Cell Involvement In Fibrosis In Chronic Graft-Versus-Host Disease, Ethan Strattan, Gerhard Carl Hildebrandt

Markey Cancer Center Faculty Publications

Allogeneic hematopoietic stem cell transplantation (HSCT) is most commonly a treatment for inborn defects of hematopoiesis or acute leukemias. Widespread use of HSCT, a potentially curative therapy, is hampered by onset of graft-versus-host disease (GVHD), classified as either acute or chronic GVHD. While the pathology of acute GVHD is better understood, factors driving GVHD at the cellular and molecular level are less clear. Mast cells are an arm of the immune system that are known for atopic disease. However, studies have demonstrated that they can play important roles in tissue homeostasis and wound healing, and mast cell dysregulation can lead …


Three-Dimensional Structure Of Human Cyclooxygenase (Hcox)-1., Morena Miciaccia, Benny Danilo Belviso, Mariaclara Iaselli, Gino Cingolani, Savina Ferorelli, Marianna Cappellari, Paola Loguercio Polosa, Maria Grazia Perrone, Rocco Caliandro, Antonio Scilimati 2021 Department of Pharmacy - Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, Bari, 70125, Italy

Three-Dimensional Structure Of Human Cyclooxygenase (Hcox)-1., Morena Miciaccia, Benny Danilo Belviso, Mariaclara Iaselli, Gino Cingolani, Savina Ferorelli, Marianna Cappellari, Paola Loguercio Polosa, Maria Grazia Perrone, Rocco Caliandro, Antonio Scilimati

Department of Biochemistry and Molecular Biology Faculty Papers

The beneficial effects of Cyclooxygenases (COX) inhibitors on human health have been known for thousands of years. Nevertheless, COXs, particularly COX-1, have been linked to a plethora of human diseases such as cancer, heart failure, neurological and neurodegenerative diseases only recently. COXs catalyze the first step in the biosynthesis of prostaglandins (PGs) and are among the most important mediators of inflammation. All published structural work on COX-1 deals with the ovine isoenzyme, which is easier to produce in milligram-quantities than the human enzyme and crystallizes readily. Here, we report the long-sought structure of the human cyclooxygenase-1 (hCOX-1) that we refined …


Digital Commons powered by bepress