Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 981

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers May 2023

Fabrication Of Black Phosphorus Terahertz Photoconductive Antennas, Nathan Tanner Sawyers

Physics Undergraduate Honors Theses

Terahertz (THz) photoconductive antennas (PCAs) using 40nm thin-film flakes of black phosphorus (BP) and hexagonal boron nitride (hBN) have been shown computationally to be capable of THz emission comparable to those based on GaAs [2]. In this paper, I briefly describe the scientific and practical interest in THz emissions and explain what warrants research into black phosphorus as a photoconductive semiconductor in THz devices. Furthermore, I outline the basic principle of how these antennas work and mention alternative designs produced by other researchers in the past. Finally, I summarize the fabrication process of these antennas, as well as the measurements …


Universal Short-Circuit And Open-Circuit Fault Detection For An Inverter, Buck Brown May 2023

Universal Short-Circuit And Open-Circuit Fault Detection For An Inverter, Buck Brown

All Theses

Short-circuit and open-circuit faults of an inverter’s power device often lead to catastrophic failure of the entire system if not detected and acted upon within a few microseconds, particularly for emerging wide bandgap (WGB) power semiconductors. While a significant amount of research has been done on the fast and accurate protection and detection of short-circuit faults, there has been less success corresponding to the research on open-circuit faults. Common downfalls include protection and detection that are too application-specific, take longer than a couple of microseconds, and are not cost-efficient. This study proposes a new open-circuit fault protection and detection system …


Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss Apr 2023

Thermal Transport Across 2d/3d Van Der Waals Interfaces, Cameron Foss

Doctoral Dissertations

Designing improved field-effect-transistors (FETs) that are mass-producible and meet the fabrication standards set by legacy silicon CMOS manufacturing is required for pushing the microelectronics industry into further enhanced technological generations. Historically, the downscaling of feature sizes in FETs has enabled improved performance, reduced power consumption, and increased packing density in microelectronics for several decades. However, many are claiming Moore's law no longer applies as the era of silicon CMOS scaling potentially nears its end with designs approaching fundamental atomic-scale limits -- that is, the few- to sub-nanometer range. Ultrathin two-dimensional (2D) materials present a new paradigm of materials science and …


Electrothermal Properties Of 2d Materials In Device Applications, Samantha L. Klein Apr 2023

Electrothermal Properties Of 2d Materials In Device Applications, Samantha L. Klein

Masters Theses

To keep downsizing transistors, new materials must be explored since traditional 3D materials begin to experience tunneling and other problematic physical phenomena at small sizes. 2D materials are appealing due to their thinness and bandgap. The relatively weak van der Waals forces between layers in 2D materials allow easy exfoliation and device fabrication but they also result in poor heat transfer to the substrate, which is the main path for heat removal. The impaired thermal coupling is exacerbated in few-layer devices where heat dissipated in the layers further from the substrate encounters additional interlayer thermal resistance before reaching the substrate, …


Geopolitics Of Semiconductor Supply Chains: The Case Of Tsmc, Us-China-Taiwan Relations, And The Covid-19 Crisis, Aditya Sehgal Apr 2023

Geopolitics Of Semiconductor Supply Chains: The Case Of Tsmc, Us-China-Taiwan Relations, And The Covid-19 Crisis, Aditya Sehgal

Independent Study Project (ISP) Collection

As the demand for more advanced forms of technology continues to grow, so does the global importance and reliance on semiconductors. This research paper examines the impact of semiconductor shortages on both consumer and military production, as well as the geopolitical implications embedded within the global supply chain.

The paper begins by providing an overview of semiconductors, the global semiconductor market, and the impact of COVID-19 on the industry’s supply chain. It also discusses the importance of the Taiwan Semiconductor Manufacturing Company (TSMC) in the industry and its role in addressing semiconductor shortages.

Next, the paper discusses the impact of …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


Analysis On Bottleneck And Prospect Of Integrated Circuit Talent Training Oriented To Sci-Tech Self-Reliance And Self-Strengthening At Higher Levels, Kaixuan Guan, Jiang Yu, Jianzhong Zhou, Feng Chen, Yan Han Feb 2023

Analysis On Bottleneck And Prospect Of Integrated Circuit Talent Training Oriented To Sci-Tech Self-Reliance And Self-Strengthening At Higher Levels, Kaixuan Guan, Jiang Yu, Jianzhong Zhou, Feng Chen, Yan Han

Bulletin of Chinese Academy of Sciences (Chinese Version)

The most essential feature of building a new development paradigm is to achieve sci-tech self-reliance and self-strengthening at higher levels. The integrated circuit industry, as an important pillar to achieve this essential feature, is facing a severe external situation. China's chip shortage pain begins with a shortage of talents. The structural problem of uneven development at the overall level of the industry makes it more difficult to effectively gather and distribute talents. To achieve sci-tech self-reliance and self-strengthening at higher levels, we need to be both demand-oriented and problem-oriented, which means not only to pay attention to the core technology …


Strengthen Building Of Basic Reach Capacity For Semiconductor Research To Light Up “Beacon” Towards Realizing The Self-Reliance And Self-Improvement Of Semiconductors, Junwei Luo, Shushen Li Feb 2023

Strengthen Building Of Basic Reach Capacity For Semiconductor Research To Light Up “Beacon” Towards Realizing The Self-Reliance And Self-Improvement Of Semiconductors, Junwei Luo, Shushen Li

Bulletin of Chinese Academy of Sciences (Chinese Version)

No abstract provided.


Causes, Countermeasures And Enlightenment Of “Eu Semiconductor Crisis”: Interpretation Around The European Chips Act, Junfeng Li, Ying Zhang Feb 2023

Causes, Countermeasures And Enlightenment Of “Eu Semiconductor Crisis”: Interpretation Around The European Chips Act, Junfeng Li, Ying Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

The European Union (EU) is one of the origins of the global semiconductor industry, but due to its structural defects in the semiconductor value chain, it has encountered a crisis of chip shortages and supply cuts since 2021. The European Chips Act drafted by EU proposes a path for semiconductor ecological construction, crisis intervention regulatory measures, and outlines a blueprint for a "national system for the chip industry with EU characteristics". These factors are of speculative significance and reference value for China to balance the relationship between the government and the market, subsidies and competition, key construction and inclusive support …


Semiconductor Devices, Sheila D. Hill Pe Feb 2023

Semiconductor Devices, Sheila D. Hill Pe

KSU Distinguished Course Repository

3 Class Hours, 0 Laboratory Hours, 3 Credit Hours Prerequisites: CHEM 1211, CHEM 1211L, EE 1000
This course effectively applies the knowledge of chemistry and physics to understand the operating principles of various semiconductor devices. The course covers topics starting from the fundamental concepts of atomic and crystal structure, crystal growth, impurity doping and energy bands to the in-depth device operation and quantitative analysis of p-n junction diode, metal-semiconductor contacts and Schottky diode, BJTs and MOSFETs. Also fundamental operating principles of optoelectronic devices such as, LEDs and photodiodes are discussed. Simple device simulation components reinforces the understanding of various critical …


In-Field Solar Panel Assessment And Fault Diagnosis, Muhammad Elgamal Jan 2023

In-Field Solar Panel Assessment And Fault Diagnosis, Muhammad Elgamal

Theses and Dissertations

Photovoltaic energy is a green energy that suit from small houses to high-power stations spanning large areas. In such large areas, monitoring individual panels can be a tedious task, especially if it was required to identify operational faults of these panels. Photovoltaic 4.0 technology depend on collecting data from each station and feeding them to a central processing system that can analyze operation data and hopefully locate when a fault happens. In such method, it is crucial to be accurate as much as possible and for measuring device to be accurate as well to have a clear judgement. In this …


Utilizing Machine Learning Algorithm In Predicting The Power Conversion Efficiency Limit Of A Monolithically Perovskites/Silicon Tandem Structure, Moustafa Ganoub, Omar Elsaban, Sameh O. Abdellatif Dr, Khaled Kirah, Hani Ghali Jan 2023

Utilizing Machine Learning Algorithm In Predicting The Power Conversion Efficiency Limit Of A Monolithically Perovskites/Silicon Tandem Structure, Moustafa Ganoub, Omar Elsaban, Sameh O. Abdellatif Dr, Khaled Kirah, Hani Ghali

Electrical Engineering

Tandem structures have been introduced to the photovoltaics (PV) market to boost power conversion efficiency (PCE). Single-junction cells’ PCE, either in a homojunction or heterojunction format, are clipped to a theoretical limit associated with the absorbing material bandgap. Scaling up the single-junction cells to a multi-junction tandem structure penetrates such limits. One of the promising tandem structures is the perovskite over silicon topology. Si junction is utilized as a counter bare cell with perovskites layer above, under applying the bandgap engineering aspects. Herein, we adopt BaTiO3/CsPbCl3/MAPbBr3/CH3NH3PbI3/c-Si tandem structure to be investigated. In tandem PVs, various input parameters can be tuned …


Development Of Automated Egg Incubator With Backup Power Supply, Allen N. Maroma, Dolly P. Maroma, Bernardo A. Pangilinan Jan 2023

Development Of Automated Egg Incubator With Backup Power Supply, Allen N. Maroma, Dolly P. Maroma, Bernardo A. Pangilinan

ASEAN Journal of Community Engagement

This study addresses the development of an automated egg incubator with backup power supply that could benefit farmer communities through the developmental research approach. A prototype is developed to respond to the needs for uninterrupted incubation which is affected by the frequent power outages that reduce its efficiency in egg handling. In this project, the automated egg incubator with a backup power supply is designed to hatch a capacity of 150 eggs (75 setters and 75 hatchers) every 21 days, ensuring continuous operation even in the absence of a consistent power supply. An inverter, connected to a battery, ensures a …


Design And Fabrication Of A Low Power 7.2 Terabit Transmitter For Exascale Computing, Scott Mcwilliams, Scott Mcwilliams Jan 2023

Design And Fabrication Of A Low Power 7.2 Terabit Transmitter For Exascale Computing, Scott Mcwilliams, Scott Mcwilliams

Electrical Engineering Theses and Dissertations

Enhanced Coupled Strength (ECS) gratings fabricated into III-V based devices offer high reflected power per unit length and broad band reflectivity as compared to conventional 1st order gratings, desired qualities for short-haul high speed transmitters that can be implemented without the need for chip-level temperature control, contributing to the low power per transmitted bit. For commercial DBR lasers, the grating reflectivity results in an extremely narrow reflectivity spectrum, which is highly desired for most/many applications, but requires a power hungry thermo-electric cooler to maintain a fixed frequency. The proposed LEAM (laser electro-absorption modulator) requires a broad reflectivity spectrum, which, by …


Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica Jan 2023

Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica

Theses and Dissertations--Chemical and Materials Engineering

A dispenser cathode’s ability to thermionically emit electrons is highly dependent on its material properties, especially those of the surface. Understanding the relationship between surface properties and electron emission, therefore, is vital to reach the next generation of the many vacuum electron devices (VEDs) that rely on the physics of electron emission. In the past century, many techniques have been developed to characterize material surfaces and quantify thermionic emission. These techniques are based on a wide range of different physical phenomena, including measuring photoemission via the photoelectric effect, measuring the electrostatic potential between metals in electrical contact, and current collection …


High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis, Jessica Malinsky Jan 2023

High Energy Blue Light Induces Oxidative Stress And Retinal Cell Apoptosis, Jessica Malinsky

Capstone Showcase

Blue light (BL) is a high energy, short wavelength spanning 400 to 500 nm. Found in technological and environmental forms, BL has been shown to induce photochemical damage of the retina by reactive oxygen species (ROS) production. Excess ROS leads to oxidative stress, which disrupts retinal mitochondrial structure and function. As mitochondria amply occupy photoreceptors, they also contribute to oxidative stress due to their selectively significant absorption of BL at 400 to 500 nm. ROS generation that induces oxidative stress subsequently promotes retinal mitochondrial apoptosis. BL filtering and preventative mechanisms have been suggested to improve or repair BL-induced retinal damage, …


A Phase Change Memory And Dram Based Framework For Energy-Efficient And High-Speed In-Memory Stochastic Computing, Supreeth Mysore Jan 2023

A Phase Change Memory And Dram Based Framework For Energy-Efficient And High-Speed In-Memory Stochastic Computing, Supreeth Mysore

Theses and Dissertations--Electrical and Computer Engineering

Convolutional Neural Networks (CNNs) have proven to be highly effective in various fields related to Artificial Intelligence (AI) and Machine Learning (ML). However, the significant computational and memory requirements of CNNs make their processing highly compute and memory-intensive. In particular, the multiply-accumulate (MAC) operation, which is a fundamental building block of CNNs, requires enormous arithmetic operations. As the input dataset size increases, the traditional processor-centric von-Neumann computing architecture becomes ill-suited for CNN-based applications. This results in exponentially higher latency and energy costs, making the processing of CNNs highly challenging.

To overcome these challenges, researchers have explored the Processing-In Memory (PIM) …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Organic Waste Crushing Machine Automation In Eco Enzyme Production, Syamsudduha Syahrorini, Shazana Dhiya Ayuni, Fariz Zulfiryansyah, Izza Rosyidah Dec 2022

Organic Waste Crushing Machine Automation In Eco Enzyme Production, Syamsudduha Syahrorini, Shazana Dhiya Ayuni, Fariz Zulfiryansyah, Izza Rosyidah

Elinvo (Electronics, Informatics, and Vocational Education)

In 2025, Indonesia has launched a zero-waste program. Towards a zero-waste program, of course, the community is given awareness in sorting and processing waste. Waste management is a common problem in urban or rural areas, along with the increase in population and people's lifestyles. Waste problems that are not handled properly can cause environmental problems (pollution of air, soil, and water) and public health. Based on the origin, waste is divided into organic and inorganic waste; organic waste is produced from biological materials that can be degraded by microbes or are biodegradable, or waste from fruit, vegetable, and leaf residues. …


Reliability Enhancing Control Algorithms For Two-Stage Grid-Tied Inverters, Yuheng Wu Dec 2022

Reliability Enhancing Control Algorithms For Two-Stage Grid-Tied Inverters, Yuheng Wu

Graduate Theses and Dissertations

In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Hybrid Multilevel Converters With Internal Cascaded/Paralleled Structures For Mv Electric Aircraft Applications, Fei Diao Dec 2022

Hybrid Multilevel Converters With Internal Cascaded/Paralleled Structures For Mv Electric Aircraft Applications, Fei Diao

Graduate Theses and Dissertations

Using on-board medium voltage (MV) dc distribution system has been a megatrend for next-generation electric aircraft systems due to its ability to enable a significant system mass reduction. In addition, it makes electric propulsion more feasible using MV power electronic converters. To develop high-performance high-density MV power converters, the emerging silicon carbide (SiC) devices are more attractive than their silicon (Si) counterparts, since the fast switch frequency brought by the SiC can effectively reduce the volume and weight of the filter components and thus increase the converter power density. From the converter topology perspective, with the MV dc distribution, the …


Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn Dec 2022

Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn

All Dissertations

An original design and photolithographic fabrication process for poly(3-hexylthiophene-2, 5-diyl) (P3HT) based organic thin-film transistors (OTFTs) is presented. The structure of the transistors was based on the bottom gate bottom contact OTFT. The fabrication process was efficient, cost-effective, and relatively straightforward to implement. Current–voltage (I-V) measurements were performed to characterize the primary electronic properties of the transistors. The measured mobility of these transistors was significantly higher than most results reported in the literature for other similar bottom gate bottom contact P3HT OTFTs. The higher mobility is explained primarily by the effectiveness of the fabrication process in keeping the interfacial layers …


Synthesis And Characterization Of Vo2 Thin Films On Piezoelectric Substrates, Samee Azad Dec 2022

Synthesis And Characterization Of Vo2 Thin Films On Piezoelectric Substrates, Samee Azad

All Theses

Polycrystalline VO2 thin films synthesized on two piezoelectric substrates (AT-cut quartz and GaN/AlGaN/GaN/Si) using low pressure direct oxidation technique have been characterized and compared to VO2 grown on traditional non-piezoelectric substrates sapphire and SiO2/Si. X-ray diffraction and atomic force microscopy characterization performed on the as grown films confirmed high quality of the VO2 films grown on both the piezoelectric and non-piezoelectric substrates. Changes in material properties associated with the semiconductor metal transition (SMT) of the VO2 films were investigated through resistivity and transmitted optical power changes measured across the SMT. It was observed that …


Raman Scattering Measurements And Analyses Of Gan Thin Films Grown On Zno Substrates By Metalorganic Chemical Vapor Deposition, Zane Mcdaniel, Zhe Chuan Feng, Kevin Stokes Nov 2022

Raman Scattering Measurements And Analyses Of Gan Thin Films Grown On Zno Substrates By Metalorganic Chemical Vapor Deposition, Zane Mcdaniel, Zhe Chuan Feng, Kevin Stokes

Symposium of Student Scholars

Metalorganic chemical vapor deposition (MOCVD) is a popularly used method of growing thin films of GaN on ZnO (GZ) substrates, which pair well due to their structural and characteristic similarities. In this research, optical characterization of the surface quality of GZ sample films is measured by analyzing Raman scattering (RS) using a Renishaw inVia spectrometer fitted with a 532nm laser. Samples were grown in an improved double injection block rotating disc reactor. Multiple samples' spectra show broad peaks that correspond with the E2 (high) and A1 (LO) branches of GaN, and nicely fitted curves are observed for the characteristic E2 …


Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton Nov 2022

Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton

Faculty Publications

Excerpt: Transition-metal ions (Ni, Cu, and Zn) in β-Ga2O3 crystals form deep acceptor levels in the lower half of the bandgap. In the present study, we characterize the Ni acceptors in a Czochralski-grown crystal and find that their (0/−) level is approximately 1.40 eV above the maximum of the valence band.


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


Redefining Research In Nanotechnology Simulations: A New Approach To Data Caching And Analysis, Darin Tsai, Alan Zhang, Aloysius Rebeiro Nov 2022

Redefining Research In Nanotechnology Simulations: A New Approach To Data Caching And Analysis, Darin Tsai, Alan Zhang, Aloysius Rebeiro

The Journal of Purdue Undergraduate Research

No abstract provided.


Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto Nov 2022

Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto

All Theses

Planar optical devices offer a lightweight solution to the constraints found in traditional optical devices. While subwavelength patterning of optics offers attractive performance and size, traditional fabrication methods demand a trade-off between resolution and throughput that presents a significant hurdle for the widespread use of subwavelength devices. Nanoimprinting of refractive index (NIRI) is a novel fabrication method pioneered in previous work that offers promise in mitigating the throughput issues that hamstring traditional fabrication methods. However, NIRI has not been shown to impart full $2\pi$ phase control in planar optical devices, nor has a method for fabricating arbitrary designs using the …