Open Access. Powered by Scholars. Published by Universities.®

Electronic Devices and Semiconductor Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

958 Full-Text Articles 1,528 Authors 513,442 Downloads 82 Institutions

All Articles in Electronic Devices and Semiconductor Manufacturing

Faceted Search

958 full-text articles. Page 1 of 41.

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi 2024 University of Kentucky

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


Smart System For Wheat Diseases Early Detection, Rustam Baratov, Himola Sunnatillayeva, Almardon Mamatovich Mustafoqulov 2023 Tashkent Institute of Irrigation and Agricultural Mechanization Engineers. National Research University. Address: Kary Niyaziy Str., 39, 100000, Tashkent, Uzbekistan. E-mail: rbaratov@mail.ru;

Smart System For Wheat Diseases Early Detection, Rustam Baratov, Himola Sunnatillayeva, Almardon Mamatovich Mustafoqulov

Chemical Technology, Control and Management

This paper presents a smart system for early detection of wheat plant diseases in the vegetation period. The proposed smart system allows detecting three types of wheat diseases, particularly yellow rust, powdery mildew and septoria at early stage and significantly improves the soil and ecology by locally spraying harmful chemicals just to sickness plants. The proposed diagnostic program is created in the C++ programming language. The basic structure of the smart system consists of Raspberry PI 4 MODULE, Logitech HD Pro Webcam C920, buzzer, HC-SR04 distance sensor, DC motor driver, AC motor, power supply, relay and some digital devices.


Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler 2023 University of New Mexico

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam 2023 University of Louisville

Investigating Mems Devices In Flow Conditions Relevant To Flow-Through Systems., Mohammad Shafquatul Islam

Electronic Theses and Dissertations

Advancements in microscale actuating technologies has substantially expanded the possibilities of interacting with the surrounding environment. Microstructures that deflect in response to mechanical forces are one of the largest application areas of microelectromechanical systems (MEMS). MEMS devices, functioning as sensors, actuators, and support structures, find applications in inertial sensors, pressure sensors, chemical sensors, and robotics, among others. Driven by the critical role of catalytic membrane reactors, this dissertation aims to evaluate enzyme activity on polymeric membranes and explore how fabrication methods from the field of Electrical and Computer Engineering (ECE) can incorporate sensing and actuation into these porous surfaces. Toward …


Design, Fabrication, And Integration Of Robotic Skin Sensors For Human Robot Interaction., Olalekan Olakitan Olowo 2023 University of Louisville

Design, Fabrication, And Integration Of Robotic Skin Sensors For Human Robot Interaction., Olalekan Olakitan Olowo

Electronic Theses and Dissertations

Enhancing physical human-robot interaction in modern robotics relies on refining the tactile perception of robot skin sensors. This research focuses on crucial aspects of the development process, including fabrication techniques, miniaturization, and integration for a more efficient collaborative human-robot interface. The fabrication process of robot skin sensors, designed to mimic human skin, is explored both within and outside cleanroom environments. An enhanced technique is presented to increase fabrication yield and create more miniaturized sensor designs with feature sizes in the tens of microns. These sensors function as piezoresistive arrays using organic polymers like PEDOT: PSS as the pressure-sensing medium. Various …


Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice 2023 University of Arkansas-Fayetteville

Characterization Of Highly Doped N-Type And P-Type Silicon Carbide Ohmic Contacts, Tanner Rice

Graduate Theses and Dissertations

Silicon Carbide (SiC) is a rather new material that possesses unparalleled properties when compared to Silicon. Due to its larger band gap alongside other thermal properties, SiC can survive in hotter, more radiation intensive environments, whether that be within the crust of the earth or in the reaches of space. As a desirable semiconductor for these applications, CMOS is an especially important device due to its low power consumption. However, creating a good contact between the metal and semiconductor optimally requires two different metals for the n -type and the p-type semiconductor. This greatly increases the processing time, as separate …


Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic 2023 University of Nebraska-Lincoln

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation will show successful development and characterization of amorphous boron carbide-amorphous silicon heterojunction device with potential for neutron detection. The amorphous hydrogenated boron carbide (a-BC:H) has been extensively researched as a semiconductor for neutron voltaic device fabrication. Naturally occurring boron contains 19.8% of boron isotope B10 that has a high absorption cross section of thermal neutrons at lower energies, and boron carbide contains 14.7% of that B10 isotope. Therefore, as a semiconductor compound of boron a-BC:H has the ability to absorb radiation, generate charge carriers, and collect those carriers. Previous work on a-BC:H devices investigated the fabrication …


Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li 2023 University of New Mexico - Main Campus

Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li

Optical Science and Engineering ETDs

Solid-state lighting has achieved significant success over the past two decades, but the low quantum efficiency of green LEDs (i.e., the “green gap”) remains a barrier to full red-green-blue (RGB) displays in numerous applications. Combating efficiency reduction in longer-wavelength LEDs requires understanding the relative roles of intrinsic effects (e.g., wave-function overlap, carrier-current density relationship, phase-space filling (PSF)) vs. extrinsic effects (e.g., material degradation due to increased defect density, compositional inhomogeneities, etc.). A systematic study of the carrier dynamics in InGaN/GaN LEDs is very important for understanding the origin of the green gap and for providing solutions to improve the efficiency …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim 2023 Air Force Institute of Technology

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young 2023 Louisiana State University at Baton Rouge

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young

LSU Doctoral Dissertations

The electrical characteristics of 2D materials such as high electron mobility and current density are of great interest to various fields from optoelectronics to renewable energy. Researchers have focused their efforts on transition metal dichalcogenides (TMDCs) due to their direct energy band gap. One such TMDC that has garnered much attention is molybdenum disulfide (MoS2). MoS2 has electrical properties comparable to graphene and is a TMDC with characteristics amenable to applications such as solar cells and sensors. Commonly deposited through time-consuming and complex deposition methods such as chemical vapor deposition (CVD), the viability of MoS2 as an electronic material will …


Dynamic Mechanism Of Science Based Technological Innovation And Industrial Evolution—Take Semiconductor, Digital Computer And Radio Technologies As Examples, Yi Zhang, Qiang YAN 2023 School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China

Dynamic Mechanism Of Science Based Technological Innovation And Industrial Evolution—Take Semiconductor, Digital Computer And Radio Technologies As Examples, Yi Zhang, Qiang Yan

Bulletin of Chinese Academy of Sciences (Chinese Version)

By studying the technological innovation and industrial development process of semiconductor, digital computer and radio, this study analyzes the path, conditions and force of science-based technological innovation and its industrialization, establishes a chain reaction model of large-scale technological innovation and diffusion, and compares it with market-based technological innovation. It is found that the large-scale aggregation of scientific research institutions and industrial laboratories accelerates the speed of technological innovation, and diffuses along two paths of scientific research institutions to enterprises and enterprises to enterprises, forming a chain reaction of large-scale technological innovation. Strategic demand is the basic driving force for the …


Acquiring Commanding Heights Of “Gallium System” Semiconductor Technology, Assisting In Achievement Of The First Breakthrough In Optoelectronic Information Industry, Yun ZHANG 2023 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China

Acquiring Commanding Heights Of “Gallium System” Semiconductor Technology, Assisting In Achievement Of The First Breakthrough In Optoelectronic Information Industry, Yun Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

No abstract provided.


Theoretical Analysis Of Charge Conduction And Rectification In Self-Assembled-Monolayers In Molecular Junctions, Francis Adoah 2023 University of Central Florida

Theoretical Analysis Of Charge Conduction And Rectification In Self-Assembled-Monolayers In Molecular Junctions, Francis Adoah

Electronic Theses and Dissertations, 2020-

As electrical devices shrink to the atomic scale, it is expected that Moore's law will soon be obsolete for semiconductor devices. In 1974, Avriam and Ratner predicted that organic devices could replace semiconductor technology, leading to extensive research on molecular-based organic devices. This dissertation delves into the theoretical frameworks used to examine the transport in molecular junctions and aims to enhance our comprehension of charge transport and conduction properties. The studies presented in this thesis illustrates that a molecule's alteration by just a single atom can change it from an insulator to a conductor, and also that, by fine-tuning the …


Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron 2023 University of Massachusetts Amherst

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad 2023 Clemson University

Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad

All Dissertations

Specialized and optimized low pressure direct oxidation technique have been implemented to synthesize high quality VO2 thin films on various substrates (sapphire, SiO2/Si, AT-cut quartz, GaN/AlGaN/GaN/Si and muscovite). Structural and surface characterization methods such as X-ray diffraction, Raman spectroscopy and atomic force microscopy have been administered on the grown VO2 films which indicate their material quality. Transition of characteristics of the VO2 films are caused by semiconductor metal transition (SMT). This phenomenon is attributed as the change maker in transition of resistivity and transmitted optical power through the VO2 films. Apart the substrates mentioned, …


Study Of Radiation Effects In Gan-Based Devices, Han Gao 2023 Southern Methodist University

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Flux-Quanta Injection For Nonreciprocal Current Control In A Two-Dimensional Noncentrosymmetric Superconducting Structure, Serafim Teknowijoyo, Sara Chahid, Armen Gulian 2023 Chapman University

Flux-Quanta Injection For Nonreciprocal Current Control In A Two-Dimensional Noncentrosymmetric Superconducting Structure, Serafim Teknowijoyo, Sara Chahid, Armen Gulian

Mathematics, Physics, and Computer Science Faculty Articles and Research

We designed and experimentally demonstrated a four-terminal superconducting device, a “quadristor,” that can function as a nonlatching (reversible) superconducting switch from the diode regime to the resistive state by application of a control current much smaller than the main transport current. The device uses a vortex-based superconducting-diode mechanism that is switched back and forth via the injection of flux quanta through auxiliary current leads. Our finding opens a new research area in the field of superconducting electronics.


Is There A “Nationwide System” In Field Of Science And Technology In Japan?—Survey Of Semiconductor Technology, Huimin LI, Rongping MU, Yue HAO 2023 Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing 100049, China

Is There A “Nationwide System” In Field Of Science And Technology In Japan?—Survey Of Semiconductor Technology, Huimin Li, Rongping Mu, Yue Hao

Bulletin of Chinese Academy of Sciences (Chinese Version)

Different scholars interpret the connotations and characteristics of the “Nationwide System” in quite different ways and fail to reach a consensus about whether some measures that Japan implements to tackle key problems are attributed to a “Nationwide System”. On this basis, the work started with the connotations and characteristics of the “Nationwide System” in the field of science and technology, conducted a case study of measures taken by Japan to tackle key technical problems in the semiconductor technology, and analyzed whether these measures embody relevant characteristics of the “Nationwide System” from an empirical perspective, so as to demonstrate whether there …


Spice Modeling Of Biosensing Field-Effect Transistor, Alex Castro 2023 California Polytechnic State University, San Luis Obispo

Spice Modeling Of Biosensing Field-Effect Transistor, Alex Castro

Electrical Engineering

This project created a user manual on how to generate an easily configurable and implementable Spice model for Field Effect Transistor (FET) devices created in the Cal Poly clean room. The document contained step by step procedures depicting the proper execution techniques and example results for different experiments required to gather the proper information for these models. This testing methodology was shown for finding the numerous different device parameters of a FET, including the I-V curves, threshold voltage, and subthreshold current values. The manual then described how to transfer this data into a new Spice model to allow for simulation …


Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati 2023 New Jersey Institute of Technology

Characterization Of Low Power Hfo2 Based Switching Devices For In-Memory Computing, Aseel Zeinati

Theses

Oxide based Resistive Random Access Memory (RRAM) devices are investigated as one of the promising non-volatile memories to be used for in-memory computing that will replace the classical von Neumann architecture and reduce the power consumption. These applications required multilevel cell (MLC) characteristics that can be achieved in RRAM devices. One of the methods to achieve this analog switching behavior is by performing an optimized electrical pulse. The RRAM device structure is basically an insulator between two metals as metal-insulator-metal (MIM) structure. Where one of the primary challenges is to assign an RRAM stack with both low power consumption and …


Digital Commons powered by bepress