Open Access. Powered by Scholars. Published by Universities.®

Semiconductor

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young Nov 2023

Electrophertic Deposition And Characterization Of Molybdenum Disulfide On Silicon Substrates, Alex J. Young

LSU Doctoral Dissertations

The electrical characteristics of 2D materials such as high electron mobility and current density are of great interest to various fields from optoelectronics to renewable energy. Researchers have focused their efforts on transition metal dichalcogenides (TMDCs) due to their direct energy band gap. One such TMDC that has garnered much attention is molybdenum disulfide (MoS2). MoS2 has electrical properties comparable to graphene and is a TMDC with characteristics amenable to applications such as solar cells and sensors. Commonly deposited through time-consuming and complex deposition methods such as chemical vapor deposition (CVD), the viability of MoS2 as an electronic material will …


An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid May 2021

An Accurate And Efficient Electro-Thermal Compact Model Of Sic Power Mosfet Including Third Quadrant Behavior, Arman Ur Rashid

Graduate Theses and Dissertations

Due to narrower bandgap and lower critical electric field, silicon (Si) power devices have reached their limit in terms of the maximum blocking voltage capability. Exploiting this limitation, wide bandgap devices, namely silicon carbide (SiC) and gallium nitride (GaN) devices, are increasingly encroaching on the lucrative power electronics market. Unlike GaN, SiC devices can exploit most of the established fabrication techniques of Si power devices. Having substrate of the same material, vertical device structures with higher breakdown capabilities are feasible in SiC, unlike their GaN counterpart. Also, the excellent thermal conductivity of SiC, compared to GaN and Si, let SiC …


Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati Jan 2021

Characterization, Analysis, And Application Of Wbg Power Devices For Future Power Conversion Systems, Ali Mahmoud Salman Al-Bayati

Electronic Theses and Dissertations

Semiconductor power devices are the most momentous constituents of any power converter system. Fast switching, compactness, high performance and efficiency, and high temperature operation are the exacting challenges experienced by conventional silicon (Si) power device based power converters in many applications. In this dissertation, the wide bandgap (WBG) power devices are studied and used to transcend the limitations imposed by the Si power devices. It mainly focuses on characterization and analysis of the behavior of WBG power devices as well as design and development of efficient, high performance, and reliable dc–dc power converters based on WBG technology. First, using computer …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi Aug 2020

Thermal Transport Modeling Of Semiconductor Materials From First Principles, Aliya Qureshi

Masters Theses

Over the past few years, the size of semiconductor devices has been shrinking whereas the density of transistors has exponentially increased. Thus, thermal management has become a serious concern as device performance and reliability is greatly affected by heat. An understanding of thermal transport properties at device level along with predictive modelling can lead us to design of new systems and materials tailored according to the thermal conductivity. In our work we first review different models used to calculate thermal conductivity and examine their accuracy using the experimentally measured thermal conductivity for Si. Our results suggest that empirically calculated rates …


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Influence Of Rhodium And Iridium Impurity Atoms On The Capacitive Characteristics Of Si-Siо2 Structures, Khojakbar S. Daliev, Shakhriyor Kh. Yulchiev, Xotamjon J. Mansurov Jun 2019

Influence Of Rhodium And Iridium Impurity Atoms On The Capacitive Characteristics Of Si-Siо2 Structures, Khojakbar S. Daliev, Shakhriyor Kh. Yulchiev, Xotamjon J. Mansurov

Euroasian Journal of Semiconductors Science and Engineering

It was found that the doping of the semiconductor substrate with Rh and Ir atoms leads to the increase in the density of surface states at the Si – SiO2 interface. It is determined that the surface states, due to the presence of an impurity Rh and Ir are effective generation centers.


Structural Features Of The Solid Solution (Gaas)1-X-Y(Ge2)X(Znse)Y With Quantum Dots (0≤X≤0,17; 0≤Y≤0,14), Sirojiddin Z. Zainabidinov, Khatamjon J. Mansurov, Akramjon Y. Boboev, Hkushruy A. Makhmudov Jun 2019

Structural Features Of The Solid Solution (Gaas)1-X-Y(Ge2)X(Znse)Y With Quantum Dots (0≤X≤0,17; 0≤Y≤0,14), Sirojiddin Z. Zainabidinov, Khatamjon J. Mansurov, Akramjon Y. Boboev, Hkushruy A. Makhmudov

Euroasian Journal of Semiconductors Science and Engineering

X-ray diffraction studies showed that the resulting film has a sphalerite structure and is single-crystal with the (100) orientation. The lattice parameter of the film is af = 0.56697 nm. By atomic force microscope was shown the possibility of obtaining a semiconductor heterostructure with quantum dots by the method of liquid phase epitaxy.


Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant Dec 2018

Gesn Thin Film Epitaxy And Quantum Wells For Optoelectronic Devices, Perry Christian Grant

Graduate Theses and Dissertations

Group IV photonics is an effort to generate viable infrared optoelectronic devices using group IV materials. Si-based optoelectronics have received monumental research since Si is the heart of the electronics industry propelling our data driven world. Silicon however, is an indirect material whose optical characteristics are poor compared to other III-IV semiconductors that make up the optoelectronics industry. There have been major efforts to integrate III-V materials onto Si substrates. Great progress on the integration of these III-V materials has occurred but incompatibility with CMOS processing has presented great difficulty in this process becoming a viable and cost-effective solution. Germanium …


Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li Dec 2018

Growth And Behaviors Of Inn/Gan Multiple Quantum Wells By Plasma-Assisted Molecular Beam Epitaxy, Chen Li

Graduate Theses and Dissertations

Fully realizing the potential of InGaN semiconductors requires high quality materials with arbitrary In-content. To this date the growth of In-rich InGaN films is still challenging since it suffers from the low growth temperatures and many detrimental alloying problems. InN/GaN multiple quantum wells (MQWs) and super lattices (SLs) are expected to be promising alternatives to random InGaN alloys since in principle they can achieve the equivalent band gap of InGaN random alloys with arbitrarily high In-content and at the same time bypass many growth difficulties.

This dissertation focuses on studying the growth mechanisms, structural properties and energy structures of InN/GaN …


Properties Of Matter, Mike Jackson, Holly Haney Jul 2018

Properties Of Matter, Mike Jackson, Holly Haney

High School Lesson Plans

Students will investigate the relationship(s) between thermal and electrical properties of matter. First, students will use a multimeter and temperature probe to investigate the relationship between electrical resistance and temperature of an electrical resistor composed of metals. They will then graph collected data to analyze the relationship and draw a conclusion as to their relationship. They will then perform the same investigation on a thermal resistor made of a semiconducting substance and analyze that collected data. Finally, using ClaimEvidence-Reasoning (CER) structure, students will use their experimental evidence to state the similarities and differences between the electro-thermal properties of metals and …


Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi Aug 2017

Si-Based Germanium Tin Semiconductor Lasers For Optoelectronic Applications, Sattar H. Sweilim Al-Kabi

Graduate Theses and Dissertations

Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck Aug 2016

Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solid-state devices are promising candidates for quantum computing applications due to obvious advantages in compatibility with semiconductor fabrication technologies and the extremely long coherent times of electron and nuclear spins in these devices. In such devices, electron interactions are crucial for single and two qubit gate operations. Thus it is essential to evaluate these electron-electron interactions accurately for precise qubit control. It is shown that Atomistic Configuration Interaction can be used to accurately determine electron-electron interactions in realistic semiconductor quantum computing devices. In this work, an online simulation tool on Atomistic Configuration Interaction has been implemented and published on nanoHUB.org, …


Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma May 2016

Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

An excellent candidate for an earth abundant absorber material is tungsten selenide (WSe2) which can be directly grown as a p-type semiconductor with a band gap value that matches well the solar spectrum. Although several fabrication methods were reported, further improvement is highly needed to make high quality WSe2 films. In addition, the numerical modelling of WSe2 solar devices is highly desired to assess the overall utility of the material. In this work, the growth and characterization of tungsten selenide thin films are investigated, as well simulations of homo- and hetero-junction devices. In the first part, …


Synthesis And Characterization Of 2d Atomic Layers, Adam Charnas, Gang Qiu, Peide Ye Aug 2015

Synthesis And Characterization Of 2d Atomic Layers, Adam Charnas, Gang Qiu, Peide Ye

The Summer Undergraduate Research Fellowship (SURF) Symposium

As electronic devices have continued to become smaller, a pressing need has developed for new technologies in order to surpass current size constraints. As such, 2-dimensional materials have become a topic of great interest in experimental device research. Monolayer black phosphorus, or phosphorene, is one such 2D material which shows significant potential as a p-type semiconductor. Phosphorene exhibits a number of unique and desirable electrical properties such as a layer-dependent band gap, high carrier mobility, and anisotropic conductivity. An investigation into optimal growth of black phosphorus, the precursor material to phosphorene, as well as characterization of phosphorene-based devices will be …


Study Of Direct Semiconductor Materials For An Optically Controlled Switch, Sung Taek Ko Apr 1989

Study Of Direct Semiconductor Materials For An Optically Controlled Switch, Sung Taek Ko

Electrical & Computer Engineering Theses & Dissertations

A model for a bulk GaAs photoconductive switch has been developed and solved to determine the performance of the device in closing and opening switch applications. The GaAs material has been characterized by deep level transient spectroscopy (DLTS). Two electron traps (EL2 and EL5) and one hole trap (CuB} have been detected and were included in the model. Simulation studies are performed on several GaAs switch systems composed of different combinations and density of deep levels to investigate the influence of deep traps in a photoconductive switch system. The electron occupancy of each deep trap is traced in …