Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 47

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick Dec 2016

Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick

Theses and Dissertations

Microelectromechanical Systems (MEMS) based devices, and specifically microswitches, continue to offer many advantages over competing technologies. To realize the benefits of micro-switches, improvements must be made to address performance and reliability shortfalls which have long been an issue with this application. To improve the performance of these devices, the micro-contacts used in this technology must be understood to allow for design improvements, and offer a means for testing to validate this technology and determine when such improvements are ready for operational environments. To build devices which are more robust and capable of continued operation after billions of cycles requires that …


Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake Dec 2016

Strategies And Techniques For Fabricating Mems Bistable Thermal Actuators., Dilan Ratnayake

Electronic Theses and Dissertations

Bistable elements are beginning to appear in the field of MEMS as they allow engineers to design sensors and actuators which require no electrical power and possess mechanical memory. This research focuses on the development of novel strategies and techniques for fabricating MEMS bistable structures to serve as no electrical power thermal actuators. Two parallel strategies were explored for the design and fabrication of the critical bistable element. Both strategies involved an extensive material study on candidate thin film materials to determine their temperature coefficient of expansion and as-deposited internal stress properties. Materials investigated included titanium tungsten, Invar, silicon nitride …


Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri Dec 2016

Si-Based Germanium-Tin (Gesn) Emitters For Short-Wave Infrared Optoelectronics, Seyed Amir Ghetmiri

Graduate Theses and Dissertations

Conventional integrated electronics have reached a physical limit, and their efficiency has been influenced by the generated heat in the high-density electronic packages. Integrated photonic circuits based on the highly developed Si complementary-metal-oxide-semiconductor (CMOS) infrastructure was proposed as a viable solution; however, Si-based emitters are the most challenging component for the monolithic integrated photonic circuits. The indirect bandgap of silicon and germanium is a bottleneck for the further development of photonic and optoelectronic integrated circuits.

The Ge1-xSnx alloy, a group IV material system compatible with Si CMOS technology, was suggested as a desirable material that theoretically exhibits a direct bandgap …


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris Dec 2016

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Graduate Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal structure, electron density, …


Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford Dec 2016

Design, Fabrication And Measurement Of A Plasmonic Enhanced Terahertz Photoconductive Antenna, Nathan Matthias Burford

Graduate Theses and Dissertations

Generation of broadband terahertz (THz) pulses from ultrafast photoconductive antennas (PCAs) is an attractive method for THz spectroscopy and imaging. This provides a wide frequency bandwidth (0.1-4 THz) as well as the straightforward recovery of both the magnitude and phase of the transmitted and/or reflected signals. The achieved output THz power is low, approximately a few microwatts. This is due to the poor conversion of the femtosecond laser used as the optical pump to useable current inside the antenna semiconducting material. The majority of THz power comes from the photocarriers generated within ~ 100 nm distance from the antenna electrodes. …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Growth Of Gesn And Gepb Alloy Films Using Thermal Evaporator, Hakimah Alahmed Dec 2016

Growth Of Gesn And Gepb Alloy Films Using Thermal Evaporator, Hakimah Alahmed

Graduate Theses and Dissertations

Silicon is the most important semiconductor material used in microelectronic devices. As the number of transistors keep doubling every 24 months (Moore’s law), transistors continue scaling down in size, electrical interconnect is reaching its limits to keep up with the scaling down rate in integrated circuits. These limitations are related to interconnect density and power consumption. Hence, replacing electrical interconnect with optical interconnect on the chip or between chips has the ability to overcome these limitations. However, silicon has poor light emitting efficiency, and other substitutes such as III-V materials are not suitable due to high cost, lattice mismatch, and …


Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of …


"Feasibility Of Efficient Photovoltaics In Eastern Kentucky" / "Developing A 3-D Printed Solar Vehicle With Computational Fluid Dynamics (Cfd) Simulator", Adam N. Stanley, Matthew R. Hezseltine Nov 2016

"Feasibility Of Efficient Photovoltaics In Eastern Kentucky" / "Developing A 3-D Printed Solar Vehicle With Computational Fluid Dynamics (Cfd) Simulator", Adam N. Stanley, Matthew R. Hezseltine

Posters-at-the-Capitol

Abstract 1

Feasibility of Efficient Photovoltaics in Eastern Kentucky

Photovoltaics (PV-also called solar photovoltaic devices) are used to harness the power of the sun via the electronic process that occurs within semiconductor cells. The solar energy is absorbed by the cells, which causes the electrons to break away from their atoms, allowing them to flow within the material to produce electricity. This electricity will become the renewable energy for Kentucky, as the generation of coal will but come to a stop within the near future. Like Denmark who is running on 100% renewable generation we must stride to become fully …


High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett Nov 2016

High Power Optically Pumped Semiconductor Lasers For Sodium Guidestar Applications, Shawn W. Hackett

Optical Science and Engineering ETDs

Optically pumped semiconductor lasers (OPSLs) are shown to provide a much more compact and less expensive source for illumination of the sodium layer of the mesosphere for use as a sodium laser guidestar via single and two photon excitation schemes. This represents a revolution in laser guidestar technology as the cost, size, and power requirements for a laser guidestar system are shown to have been decreased by an order of magnitude with guidestar performance shown to be similar to previous sources. Sodium laser guidestar sources for broadband simultaneous illumination of multiple lines are developed and simulated. Simulations are then compared …


Improving Current-Asymmetry Of Metal-Insulator-Metal Tunnel Junctions, Aparajita Singh Oct 2016

Improving Current-Asymmetry Of Metal-Insulator-Metal Tunnel Junctions, Aparajita Singh

FIU Electronic Theses and Dissertations

In this research, Ni–NiOx–Cr and Ni–NiOx–ZnO–Cr metal-insulator-metal (MIM) junction based tunnel diodes have been investigated for the purpose of a wide-band detector. An MIM diode has a multitude of applications such as harmonic mixers, rectifiers, millimeter wave and infrared detectors. Femtosecond-fast electron transport in MIM tunnel diodes also makes them attractive for energy-harvesting devices. These applications require the tunnel diodes to have high current-asymmetry and non-linear current-voltage behavior at low applied voltages and high frequencies. Asymmetric and non-linear characteristics of Ni–NiOx-Cr MIM tunnel diodes were enhanced in this research by the addition of ZnO as a second insulator layer in …


Pattern Reconfigurable Back-To-Back Microstrip Patch Antenna, Kansheng Yang, Xiulong Bao, Patrick Mcevoy, Max Ammann Oct 2016

Pattern Reconfigurable Back-To-Back Microstrip Patch Antenna, Kansheng Yang, Xiulong Bao, Patrick Mcevoy, Max Ammann

Articles

A back-to- back microstrip patch antenna with a switchable pattern is proposed for WLAN applications. The patch elements, printed on FR-4 substrates with a common ground plane, are switched with a single-pole double-throw PIN diode circuit. Switching the feed selects either of two identical radiation patterns in the opposing hemispheres for spatial diversity that would benefit a distributed network.


Inquiry Of Graphene Electronic Fabrication, John Rausch Greene Sep 2016

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene

Master's Theses

Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in …


Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. Walton, Laverne A. Starman Sep 2016

Thermal Management Using Mems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. Walton, Laverne A. Starman

Faculty Publications

This paper examines a passive cooling technique using microelectromechanical systems (MEMS) for localized thermal management of electronic devices. The prototype was designed using analytic equations, simulated using finite element methods (FEM), and fabricated using the commercial PolyMUMPs™ process. The system consisted of an electronic device simulator (EDS) and MEMS bimorph cantilever beams (MBCB) array with beams lengths of 200, 250, and 300 μm that were tested to characterize deflection and thermal behavior. The specific beam lengths were chosen to actuate in response to heating associated with the EDS (i.e. the longest beams actuated first corresponding to the hottest portion of …


Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne Aug 2016

Direct Bandgap Cross-Over Point Of Ge1-YSnY Grown On Si Estimated Through Temperature-Dependent Photoluminescence Studies, Thomas R. Harris, Mee-Yi Ryu, Yung Kee Yeo, Buguo Wang, C. L. Senaratne

Faculty Publications

Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, …


Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam Aug 2016

Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shadow-induced degradation is a major concern for both power output and long-term reliability in solar cells. Apart from the obvious fact that shading reduces the amount of solar irradiance available to solar panels, it may lead to formation of hot spots, where solar cells are forced to reverse breakdown with localized heating, and potentially, permanent damage. To get a better understanding of shadow-induced degradation, we develop an electro-thermal coupled simulator that can self-consistently solve the electrical and thermal distributions of solar panel under arbitrary shading conditions. The simulation framework consists of two part: a) compact models that can describe the …


Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck Aug 2016

Atomistic Configuration Interaction Simulation Tool For Semiconductor Based Quantum Computing Devices, Jingbo Wu, Archana Tankasala, Jim Fonseca, Rajib Rahman, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solid-state devices are promising candidates for quantum computing applications due to obvious advantages in compatibility with semiconductor fabrication technologies and the extremely long coherent times of electron and nuclear spins in these devices. In such devices, electron interactions are crucial for single and two qubit gate operations. Thus it is essential to evaluate these electron-electron interactions accurately for precise qubit control. It is shown that Atomistic Configuration Interaction can be used to accurately determine electron-electron interactions in realistic semiconductor quantum computing devices. In this work, an online simulation tool on Atomistic Configuration Interaction has been implemented and published on nanoHUB.org, …


Multi-Physics Modeling, Ahmadreza Ghahremani Aug 2016

Multi-Physics Modeling, Ahmadreza Ghahremani

Doctoral Dissertations

Having access to powerful processors allows scientists to carry out aggressive numerical computations to bridge the gaps which already exist among different fields of physics by exploring new multi-physics models to approach real life models of various phenomena happening around us in real life and accounting of the various coupling and dependence between the various physical parameters and material parameters.

Scientists greatly appreciate multi-physics modeling as they recognize:

1- Prototyping is expensive

2- Most of available CAD tools are not addressing the real model or accounting between the different physical parameters

3- Some difficulties to optimize the real model without …


Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez Aug 2016

Compact Modeling Of Sic Insulated Gate Bipolar Transistors, Sonia Perez

Graduate Theses and Dissertations

This thesis presents a unified (n-channel and p-channel) silicon/silicon carbide Insulated Gate Bipolar Transistor (IGBT) compact model in both MAST and Verilog-A formats. Initially, the existing MAST model mobility equations were updated using recently referenced silicon carbide (SiC) data. The updated MAST model was then verified for each device tested. Specifically, the updated MAST model was verified for the following IGBT devices and operation temperatures: n-channel silicon at 25 ˚C and at 125 ˚C; n-channel SiC at 25 ˚C and at 175 ˚C; and p-channel SiC at 150 ˚C and at 250 ˚C. Verification was performed through capacitance, DC output …


Modeling And Simulation Of 1700 V 8 A Genesic Superjunction Transistor, Staci E. Brooks Aug 2016

Modeling And Simulation Of 1700 V 8 A Genesic Superjunction Transistor, Staci E. Brooks

Graduate Theses and Dissertations

The first-ever 1.7kV 8A SiC physics-based compact SPICE model is developed for behavior prediction, modeling and simulation of the GeneSiC “Super” Junction Transistor. The model implements Gummel-Poon based equations and adds a quasi-saturation collector series resistance representation from a 1.2 kV, 6 A SiC bipolar junction transistor model developed in Hangzhou, China. The model has been validated with the GA08JT17-247 device data representing both static and dynamic characteristics from GeneSiC. Parameter extraction was performed in IC-CAP and results include plots showing output characteristics, capacitance versus voltage (C-V), and switching characteristics for 25 °C, 125 °C, and 175 °C temperatures.


Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani Jul 2016

Nanofabrication And Spectroscopy Of Magnetic Nanostructures Using A Focused Ion Beam, Ali Hadjikhani

FIU Electronic Theses and Dissertations

This research used a focused ion beam in order to fabricate record small nano-magnetic structures, investigate the properties of magnetic materials in the rarely studied range of nanometer size, and exploit their extraordinary characteristics in medicine and nano-electronics. This study consists of two parts: (i) Fabrication and study of record small magnetic tunnel junctions (ii) Introduction of a novel method for detection of magnetoelectric nanoparticles (MENs) in the tissue.

A key challenge in further scaling of CMOS devices is being able to perform non-volatile logic with near zero power consumption. Sub-10-nm nanomagnetic spin transfer torque (STT) magnetic tunneling junctions (MTJs) …


Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina Jul 2016

Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina

FIU Electronic Theses and Dissertations

Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on …


Active Charge Balancing For Cardiac Stimulation, Maci Miri Jun 2016

Active Charge Balancing For Cardiac Stimulation, Maci Miri

Electrical Engineering

Worldwide, there are about 3 million people who have pacemakers, with 10,000 new implantations of ICD’s each month. [heart.org] Due to the gravity and importance of the function that ICD’s provide, these devices must be extremely reliable and highly effective. However, because of the high tolerances of IC manufacturing, stimulation circuits for pacemakers may be slightly unmatched and over time, may have a net DC charge applied to the tissues in the heart. Extra charge pumped into body tissues is dangerous for the patient’s health; the pH of the tissue can be raised and corrosion of the stimulating electrodes may …


Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun May 2016

Design And Implementation Of An Integrated Biosensor Platform For Lab-On-A-Chip Diabetic Care Systems, Khandaker Abdullah Al Mamun

Doctoral Dissertations

Recent advances in semiconductor processing and microfabrication techniques allow the implementation of complex microstructures in a single platform or lab on chip. These devices require fewer samples, allow lightweight implementation, and offer high sensitivities. However, the use of these microstructures place stringent performance constraints on sensor readout architecture. In glucose sensing for diabetic patients, portable handheld devices are common, and have demonstrated significant performance improvement over the last decade. Fluctuations in glucose levels with patient physiological conditions are highly unpredictable and glucose monitors often require complex control algorithms along with dynamic physiological data. Recent research has focused on long term …


Smart Gate Driver Design For Silicon (Si) Igbts And Silicon-Carbide (Sic) Mosfets, Abdulaziz Alghanem May 2016

Smart Gate Driver Design For Silicon (Si) Igbts And Silicon-Carbide (Sic) Mosfets, Abdulaziz Alghanem

Electrical Engineering Undergraduate Honors Theses

The design of an efficient and smart gate driver for a Si IGBT and SiC MOSFET is addressed in thesis. First, the main IGBT parameters are evaluated thoroughly in order to understand their effects in the design of the gate driver. All known consequences of previously designed gate drivers are studied in order to achieve an optimum gate driver. As a result of this assessment, the designer is able to determine whether adding or removing components from the gate driver circuit are beneficial or not. Then, exhaustive research is done to identify suitable integrated circuits to use for the power …


Numerical And Analytical Modeling To Determine Performance Trade-Offs In Hydrogel-Based Ph Sensors, Piyush Dak, Muhammad Ashraful Alam May 2016

Numerical And Analytical Modeling To Determine Performance Trade-Offs In Hydrogel-Based Ph Sensors, Piyush Dak, Muhammad Ashraful Alam

Birck and NCN Publications

Hydrogel based pH sensors are promising candidates for implantable sensors due to their low-cost and biocompatibility. Despite their commercial potential and numerous theoretical/experimental reports, the trade-offs between different performance parameters are not well understood, and explicitly stated. In this work, we develop a numerical and analytical framework to show that there is a fundamental trade-off between the performance parameters i.e. sensitivity/dynamic range vs. response-time/response-asymmetry in hydrogel sensors under constrained swelling conditions. Specifically, we consider the effect of the gel parameters, such as the ionizable group density ( Nf) and its dissociation constant ( Ka), on the …


Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma May 2016

Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

An excellent candidate for an earth abundant absorber material is tungsten selenide (WSe2) which can be directly grown as a p-type semiconductor with a band gap value that matches well the solar spectrum. Although several fabrication methods were reported, further improvement is highly needed to make high quality WSe2 films. In addition, the numerical modelling of WSe2 solar devices is highly desired to assess the overall utility of the material. In this work, the growth and characterization of tungsten selenide thin films are investigated, as well simulations of homo- and hetero-junction devices. In the first part, …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Sensorless Rotor Position Estimation For Brushless Dc Motors, Iram G. Raza Apr 2016

Sensorless Rotor Position Estimation For Brushless Dc Motors, Iram G. Raza

Electronic Thesis and Dissertation Repository

Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand.

Among the …


Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin Mar 2016

Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin

FIU Electronic Theses and Dissertations

The outstanding electrical and material properties of Graphene have made it a promising material for several fields of analog applications, though its zero bandgap precludes its application in digital and logic devices. With its remarkably high electron mobility at room temperature, Graphene also has strong potential for terahertz (THz) plasmonic devices. However there still are challenges to be solved to realize Graphene’s full potential for practical applications.

In this dissertation, we investigate solutions for some of these challenges. First, to reduce the access resistances which significantly reduces the radio frequency (RF) performance of Graphene field effect transistors (GFETs), a novel …