Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,659 Full-Text Articles 7,785 Authors 1,422,360 Downloads 110 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,659 full-text articles. Page 7 of 148.

Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, piyush grover 2022 University of Nebraska-Lincoln

Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements in the presence of a local inhomogeneity (“defect”). Numerical simulations reveal that depending upon its initial speed, an incoming solitary wave can get transmitted, captured, or reflected upon interaction with the defect. The dynamics are dominated by energy exchange between the wave and a breather mode localized at the defect. We derive a reduced-order two degree of freedom Hamiltonian model for wave-breather interaction and analyze it using dynamical systems techniques. Lobe dynamics analysis reveals the fine structure of phase space that leads to the complicated …


Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao 2022 University of Nebraska - Lincoln

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based on insights from a physics-based thermal simulation model. The motivation being to replace cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the model-derived thermal trends were …


A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. MacTaggart, Alexey Kamenskiy 2022 University of Nebraska-Lincoln

A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. Mactaggart, Alexey Kamenskiy

Department of Mechanical and Materials Engineering: Faculty Publications

Poor outcomes of peripheral arterial disease stenting are often attributed to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our goals were to develop a method of assessing the abrasiveness of peripheral nitinol stents and apply it to several commercial devices. Misago, AbsolutePro, Innova, Zilver, SmartControl, SmartFlex, and Supera stents were deployed inside electrospun nanofibrillar tubes with femoropopliteal artery-mimicking mechanical properties and subjected to cyclic axial compression …


Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto 2022 Clemson University

Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto

All Theses

Planar optical devices offer a lightweight solution to the constraints found in traditional optical devices. While subwavelength patterning of optics offers attractive performance and size, traditional fabrication methods demand a trade-off between resolution and throughput that presents a significant hurdle for the widespread use of subwavelength devices. Nanoimprinting of refractive index (NIRI) is a novel fabrication method pioneered in previous work that offers promise in mitigating the throughput issues that hamstring traditional fabrication methods. However, NIRI has not been shown to impart full $2\pi$ phase control in planar optical devices, nor has a method for fabricating arbitrary designs using the …


Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang 2022 Zhejiang University

Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the …


Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li 2022 School of Materials Science and Engineering, Nanyang Technological University,50 Nanyang Avenue, Singapore, 639798, Singapore;

Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li

Journal of Electrochemistry

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile …


Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar 2022 Marwadi University

Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar

Department of Mechanical and Materials Engineering: Faculty Publications

Although different materials and designs have been tried in search of the ideal as well as ultrawideband light absorber, achieving ultra-broadband and robust unpolarized light absorption over a wide angular range has proven to be a major issue. Light-field regulation capabilities provided by optical metamaterials are a potential new technique for perfect absorbers. It is our goal to design and demonstrate an ultra-wideband solar absorber for the ultraviolet to a mid-infrared region that has an absorptivity of TE/TM light of 96.2% on average. In the visible, NIR, and MIR bands of the solar spectrum, the absorbed energy is determined to …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu 2022 Florida Institute of Technology

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


Large Refrigerant Capacity In Superparamagnetic Iron Nanoparticles Embedded In A Thin Film Matrix, Kaushik Sarkar, Surabhi Shaji, Jeffrey E. Shield, Christian H. Binek, Dhananjay Kumar 2022 North Carolina A&T State University

Large Refrigerant Capacity In Superparamagnetic Iron Nanoparticles Embedded In A Thin Film Matrix, Kaushik Sarkar, Surabhi Shaji, Jeffrey E. Shield, Christian H. Binek, Dhananjay Kumar

Department of Mechanical and Materials Engineering: Faculty Publications

A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information …


A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie 2022 University of Nebraska Medical Center

A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Due to their biomimetic properties, electrospun nanofibers have been widely used in neurobiology studies. However, mechanistic understanding of cell-nanofiber interactions is challenging based on the current in vitro culture systems due to the lack of control of spatiotemporal patterning of cells and difficulty in monitoring single cell behavior. To overcome these issues, we apply microfluidic technology in combination with electrospun nanofibers for in vitro studies of interactions between neurons and nanofiber materials. We demonstrate a unique nanofiber embedded microfluidic device which contains patterned aligned or random electrospun nanofibers as a new culture system. With this device, we test how different …


Preface For Millard Beatty, E. Baesu, Roger Fosdick 2022 University of Nebraska-Lincoln

Preface For Millard Beatty, E. Baesu, Roger Fosdick

Department of Mechanical and Materials Engineering: Faculty Publications

Professor Beatty has contributed a wide variety of research papers and book articles on topics in finite elasticity, continuum mechanics and classical mechanics, including some fundamental experimental work. His works are clear and informative and expose a didactic quality. In the following, we briefly touch upon some of the highlights of his research involvement throughout the years.


Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied At Esri Nano-Fabrication Laboratories, Ecu, Australia, Mohammad Nur-E-Alam, Mikhail Vasiliev, Kamal Alameh 2022 Edith Cowan University

Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied At Esri Nano-Fabrication Laboratories, Ecu, Australia, Mohammad Nur-E-Alam, Mikhail Vasiliev, Kamal Alameh

Research outputs 2022 to 2026

Since 2007, at the Electron Science Research Institute (ESRI) nano-fabrication laboratories, Edith Cowan University, Australia, we have devoted research efforts to the synthesis and characterization of bismuth-containing ferrite-garnet-type thin-film magneto-optic (MO) materials of different compositions. We report on the growth and characteristics of radio frequency (RF) magnetron sputtered bismuth-substituted iron-garnet thin films. We study the process parameters associated with the RF magnetron sputter deposition technique and investigate the results of optimizing process parameters. To achieve the best MO properties, we employ a few unique techniques, such as co-sputtered nanocomposite films and all-garnet multilayer structures, as well as the application of …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers 2022 University of Nebraska-Lincoln

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers 2022 University of Nebraska-Lincoln

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng 2022 1. State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, China;2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China;

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao 2022 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China;

Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao

Journal of Electrochemistry

The development of efficient and durable electrodes for anion exchange membrane water electrolyzers (AEMWEs) is essential for hydrogen production. In this work, 2D NiFe layered double hydroxides (NiFe LDHs) nanosheets were grown on the 1D cobaltous carbonate hydroxide nanowires array (Co-OH-CO3) and the unique 3D layered self-supporting nanorod array (NiFe LDHs@Co-OH-CO3/NF) electrode was obtained. Importantly, we demonstrated an efficient and durable self-supporting NiFe LDHs@Co-OH-CO3/NF electrode for oxygen evolution reaction (OER) and as the anode of the AEMWE. In a three-electrode system, the self-supporting NiFe LDHs@Co-OH-CO3/NF electrode showed excellent catalytic activity for OER, …


Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi 2022 University of Nebraska-Lincoln

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi

Department of Mechanical and Materials Engineering: Faculty Publications

Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …


A Brief Review Of The Impact Of Silver Nanoparticles On Agriculture And Certain Biological Properties: A Case Study, Sushmashree Krishnappa, Shankramma Kalikeri, Raj Kumar H. Garampalli, Lingaraju H G, Charan Kumar Kachintaya 2022 Division Nanoscience and Technology, School of Natural Sciences, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru – 570 015, Karnataka, India.

A Brief Review Of The Impact Of Silver Nanoparticles On Agriculture And Certain Biological Properties: A Case Study, Sushmashree Krishnappa, Shankramma Kalikeri, Raj Kumar H. Garampalli, Lingaraju H G, Charan Kumar Kachintaya

International Journal of Health and Allied Sciences

Nanotechnology is progressively becoming a popular field of research because it has been successful in changing our agricultural and food systems. According to research published by the UNFAO, agriculture as well as its derivatives would be in high demand sooner or later, owing to nutritional changes. Nanoparticles have been reported to be used in an agricultural sector, because of its capacity to encourage crop growth and yield. Among metal nanoparticles, Silver Nanoparticles (AgNPs) are attracting a lot of attention. We have highlighted some of the agricultural uses of AgNPs, which include pest management, plant disease detection, crop enhancement, and crop …


Spatially Guided Construction Of Multilayered Epidermal Models Recapturing Structural Hierarchy And Cell–Cell Junctions, Haiwei Zhai, Xiaowei Jin, Grayson Minnick, Jordan Rosenbohm, Mohammed Abdul Haleem Hafiz, Ruiguo Yang, Fanben Meng 2022 University of Nebraska-Lincoln

Spatially Guided Construction Of Multilayered Epidermal Models Recapturing Structural Hierarchy And Cell–Cell Junctions, Haiwei Zhai, Xiaowei Jin, Grayson Minnick, Jordan Rosenbohm, Mohammed Abdul Haleem Hafiz, Ruiguo Yang, Fanben Meng

Department of Mechanical and Materials Engineering: Faculty Publications

A current challenge in 3D bioprinting of skin equivalents is to recreate the distinct basal and suprabasal layers and promote their direct interactions. Such a structural arrangement is essential to establish 3D stratified epidermis disease models, such as for the autoimmune skin disease pemphigus vulgaris (PV), which targets the cell– cell junctions at the interface of the basal and suprabasal layers. Inspired by epithelial regeneration in wound healing, a method that combines 3D bioprinting and spatially guided self-reorganization of keratinocytes is developed to recapture the fine structural hierarchy that lies in the deep layers of the epidermis.Herein, keratinocyteladen fibrin hydrogels …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf 2022 Air Force Institute of Technology

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Digital Commons powered by bepress