Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 3654

Full-Text Articles in Nanoscience and Nanotechnology

Smartphone Color Error Analysis, Mackenna Hawes Jan 2024

Smartphone Color Error Analysis, Mackenna Hawes

The Journal of Purdue Undergraduate Research

No abstract provided.


Ten Most Important Scientific Questions In Electrochemistey, Chinese Society Of Electrochemistry Jan 2024

Ten Most Important Scientific Questions In Electrochemistey, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma Jan 2024

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang Jan 2024

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira Dec 2023

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira

Electronic Theses and Dissertations

Market trends show growing interest in cellulose nanomaterials due to their low environmental impact. However, current nanocellulose isolation technologies face technoeconomic and life cycle limitations. Previous research has shown that enzymatic treatments effectively reduce the energy input for mechanical nanocellulose isolation. Simultaneously, there is potential to improve the viability of cellulosic ethanol facilities by coproducing nanocelluloses as high-value product obtained from agricultural feedstock. Here, our goal was to study the mass balance of enzymatic-mechanical processes that coproduces cellulosic sugars and nanocelluloses, evaluating the technical feasibility of converting lignified and non-lignified materials.

First, we have determined a feasible 50:50 mass ratio …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas Dec 2023

Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas

Nanoscience and Microsystems ETDs

Non-intrusive solutions for communication through a sealed metal vessel requires the use of piezoelectric transducers to transmit acoustic waves through the vessel wall. This approach suffers the disadvantage of compromised security because a potential eavesdropper could decipher the correlation between digital and electric signals of both sides of the system. One solution is a mixed physics system employing magnetostrictive transducers.

For a magnetostrictive transducer to work well in this application, it would have to have a high piezomagnetic constant. This is influenced by soft magnetism and saturation magnetostriction. Nickel-Iron-Cobalt alloys are modified to retain their soft magnetic properties while increasing …


Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen Nov 2023

Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen

Journal of Electrochemistry

Li3VO4, as a promising anode material for lithium ion batteries, has been widely studied because of its low and safe voltage, and large capacity. However, its poor electronic conductivity impedes the practical application of Li3VO4 particularly at high rates. In this paper, carbon confined Li3VO4 nano materials (Li3VO4/C) were synthesized by hydrothermal and solid-phase method, and for comparison, the Li3VO4 (N) nano materials without carbon confinement and Li3VO4 (B) materials were also synthesized by pure solid-phase method. The composition, structure, morphology and specific …


An Exploration Of Tissue Specific Impedance Using Microneedle Based Wearable Sensors, Kaitlyn J.H. Read Nov 2023

An Exploration Of Tissue Specific Impedance Using Microneedle Based Wearable Sensors, Kaitlyn J.H. Read

Nanoscience and Microsystems ETDs

Within this research, I have developed a microneedle-based wearable sensor for plants and fungi, to measure the electrical impedance of different tissues. Electrical impedance measures the physical properties of a material while allowing complex biological systems to be modeled onto a simplified electrical circuit. Microneedles allow for electrical impedance to measure specific tissues without the insulative properties of the cuticle and can be applied to delicate tissues. I have demonstrated the tissue specificity, novel attachment methods, as well as use on both plants and fungi. In chapter 1, I applied microneedle-based impedance to the leaf midrib of a sorghum and …


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel Nov 2023

Micro And Nano R2r Embossing Of Extruded Polymers, Raymond S. Frenkel

Doctoral Dissertations

This dissertation presents a process for directly imprinting or embossing extruded polymers as an advancement in roll-to-roll (R2R) embossing methods that avoids the problems of converting preformed films, increases throughput, and reduces costs. A proof-of-concept R2R apparatus was designed and constructed for directly embossing extruded polymer, and experimental results were evaluated. This laboratory scale R2R apparatus employed a thin metal ribbon belt mold with micro or nano scale features in a calendering setup, with a close coupled induction heating (IH) coil to preheat the ribbon mold above glass transition temperature (Tg) of the polymer, prior to contact with …


Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri Nov 2023

Inverse Engineering Of Absorption And Scattering In Nanoparticles: A Machine Learning Approach, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

We use a region-specified machine learning approach to inverse design highly absorptive multilayer plasmonic nanoparticles. We demonstrate the design of particles with a wide range of absorption to scattering ratios (i.e., cloaked absorbers and bright absorbers) and for different visible wavelengths.


Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen Nov 2023

Applications Of Femtosecond Laser-Processed And Nanoneedle-Synthesized Surfaces To Enhance Pool Boiling Heat Transfer, Peter Efosa Ohenhen

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

In the present work, the integration of femtosecond laser surface processing (FLSP) with copper hydroxide on hybrid surfaces was examined. The goal was to determine the impact on pool boiling enhancement. The samples for the investigation were fabricated by first functionalizing with FLSP, and the process was then followed by citric acid cleaning (CAC) to eliminate the oxides generated on the copper surface during the FLSP process. After the citric acid cleaning, the samples were immersed in ethanol and subjected to an ultrasonic bath for 25 minutes. This step was performed to eliminate any residual citric acid and loose particles. …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Charge-Dependence Of Dissolution/Deposition Energy Barrier On Cu(111) Electrode Surface By Multiscale Simulations, Hang Qiao, Yong Zhu, Sheng Sun, Tong-Yi Zhang Oct 2023

Charge-Dependence Of Dissolution/Deposition Energy Barrier On Cu(111) Electrode Surface By Multiscale Simulations, Hang Qiao, Yong Zhu, Sheng Sun, Tong-Yi Zhang

Journal of Electrochemistry

Behaviors of electrified interface under different applied potentials/charges play the central role in electroplating process and electrochemical corrosion. The mechanism, however, is unclear yet for a surface atom dissolving/depositing from/on an electrode surface under an applied potential. The energy barrier along the reaction path is the key variable. The present work conductes hybrid first-principle/hybrid calculations to study the direct and indirect dissolution/deposition of a Cu atom on perfect/stepped Cu(111) planar electrodes in an electrolyte under different excess charges. Energy profiles present a linear relationship between the energies of the initial/final state and the activation state of different reaction paths under …


Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang Oct 2023

Experimental And Simulation Study Of Reactive Silver Ink Droplet Evaporation, Weipeng Zhang

Electronic Thesis and Dissertation Repository

The evaporation of particle-free silver ink droplets on heated substrates directly impacts the morphology of the resultant silver particles and films. In this thesis, COMSOL Multiphysics simulations of the solvent (water-ethylene glycol mixture) droplet evaporation process are used to explain the microflows, mass transfers, and heat distribution responsible for the experimental observations. The reactive ink incorporates fluoro-surfactant FS-31 and poly (acrylamide) (PAM) to suppress the coffee-ring effect that negatively impacts the electrical conductivity. Experiments show that the droplet evaporation process results in varied silver particle morphology, depending on the locations within the droplet, leading to uneven surfaces. Large particles (3 …


Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery, Justin R. Brooks, Tyler C. Heiman, Sawyer R. Lorenzen, Ikhlaas Mungloo, Siamak Mirfendereski, Jae Sung Park, Ruiguo Yang Oct 2023

Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery, Justin R. Brooks, Tyler C. Heiman, Sawyer R. Lorenzen, Ikhlaas Mungloo, Siamak Mirfendereski, Jae Sung Park, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Porous substrate electroporation (PSEP) is a promising new method for delivering molecules such as proteins and nucleic acids into cells for biomedical research. Although many applications have been demonstrated, fundamentals of the PSEP delivery process are not yet well understood, partly because most PSEP studies rely solely on fluorescent imaging for evaluating delivery and quantifying successful outcomes. Although effective, only utilizing imaging alone limits our understanding of the intermediate processes leading to intracellular delivery. Since PSEP is an electrical process, electrical impedance measurements are a natural addition to fluorescent imaging for PSEP characterization. In this study, we developed an integrated …


Increased Ductility Of Ti-6al-4v By Interlayer Milling During Directed Energy Deposition, Rakeshkumar Karunakaran, Luz D. Sotelo, Hitarth Maharaja, Calsey Nez, Monsuru Ramoni, Scott Halliday, Sushil Mishra, Joseph A. Turner, Michael P. Sealy Oct 2023

Increased Ductility Of Ti-6al-4v By Interlayer Milling During Directed Energy Deposition, Rakeshkumar Karunakaran, Luz D. Sotelo, Hitarth Maharaja, Calsey Nez, Monsuru Ramoni, Scott Halliday, Sushil Mishra, Joseph A. Turner, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) often results in high strength but poor ductility in titanium alloys. Hybrid AM is a solution capable of improving both ductility and strength. In this study, hybrid AM of Ti-6Al-4V was achieved by coupling directed energy deposition with interlayer machining. The microstructure, residual stress, and microhardness were examined to explain how interlayer machining caused a 63% improvement in ductility while retaining an equivalent strength to as-printed samples. Interlayer machining introduced recurrent interruptions in printing that allowed for slow cooling-induced coarsening of acicular α laths at the machined interfaces. The coarse α laths on the selectively machined layers …


Acoustophoresis Around An Elastic Scatterer In A Standing Wave Field, Khemraj Gautam Kshetri, Nitesh Nama Oct 2023

Acoustophoresis Around An Elastic Scatterer In A Standing Wave Field, Khemraj Gautam Kshetri, Nitesh Nama

Department of Mechanical and Materials Engineering: Faculty Publications

Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the timeaveraged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Investigation Of Nanosecond Pulsed Electric Fields (Nspef) Induced Anti-Cancer Mechanism And Enhanced B16f10 Melanoma Cancer Treatment, Kamal Asadipour Oct 2023

Investigation Of Nanosecond Pulsed Electric Fields (Nspef) Induced Anti-Cancer Mechanism And Enhanced B16f10 Melanoma Cancer Treatment, Kamal Asadipour

Biomedical Engineering Theses & Dissertations

The use of nanosecond pulsed electric fields (nsPEF) has emerged as a promising area of research with vast implications across various scientific disciplines. The ability to generate ultra-short, high-voltage electric pulses has paved the way for numerous applications, ranging from fundamental investigations of biological phenomena to the development of innovative medical therapies. The aim of this thesis is to highlight the importance of nsPEF in two critical areas: 1) Understanding the impact of subtle postpulse waveforms through a comprehensive analysis of two common pulse generators and 2) using this knowledge to advance melanoma treatment by enhancing the therapeutic effect of …


Engineered Exosomes For The Multimodal Imaging Directed Photo-Immunotherapy Of Colorectal Cancer, Deepak S. Chauhan, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu Sep 2023

Engineered Exosomes For The Multimodal Imaging Directed Photo-Immunotherapy Of Colorectal Cancer, Deepak S. Chauhan, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu

Research Symposium

Background: Rio Grande Valley experience severe cancer health disparity. A novel therapeutic modality may serve as better therapeutic option. Nanohybrids endowed with multifunctionality, longer circulation time, large surface area have emerged as an active preference for cancer research. However, rising concern of nanomaterials toxicity and scalability issues has slowed their translation to clinics. Exosomes (Exo) are endogenous endocytic origin 40-100 nm vesicles found in various body fluids, which in comparison to synthetic nanoparticles, are biodegradable, highly biocompatible as well as immunocompatible in nature. Although bulk isolation of exosomes from human body fluids is still a problem and engineering of exosomes …


Biocidal Properties Of Hybrid Nanonanomaterial, Chandrasekaran Karthikeyan, Kokkarachedu Varaprasad Sep 2023

Biocidal Properties Of Hybrid Nanonanomaterial, Chandrasekaran Karthikeyan, Kokkarachedu Varaprasad

Research Symposium

Background: Cancer is one of the essential unpredictable diseases worldwide; simultaneously, complicated issues created are by the human health system. Especially, breast cancer is the most commonly occurring cancer in women and is increasing remarkably in developing countries. It is a leading cause of cancer death in women, and breast cancer incidence rates are growing globally. To diagnose and treat cancer cells, different methods such as Radiation Therapy, Surgery, and Chemotherapy. These methods are high risk, more side effects, and high costs. The advanced healthcare material was developed to overcome this problem, inexpensive tools, and diagnosis of less-toxic drugs with …


The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam Sep 2023

The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam

Basic Science Engineering

No abstract provided.


L(D)-Tyrosine-Mediated One-Step Chiral Graphene Production For Chirality-Dependent Sensing, Fnu Pranav, Ali Ashraf, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu Sep 2023

L(D)-Tyrosine-Mediated One-Step Chiral Graphene Production For Chirality-Dependent Sensing, Fnu Pranav, Ali Ashraf, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu

Research Symposium

Background: Chirality has been the most iconic phenomenon that occurred in nature. The idea of mirror-image asymmetry associated with the biological entity is still unsolved The emergence of 2D layered nanomaterials which have already shown amazing properties and a wide range of applications, especially in the areas of sensing.Amino acids enantiomers have similar physical and chemical properties however their physiological responses get changed based on the enantiomers. For example, L from amino acids helps body in protein formation, and generation of biological signals etc. whereas the D-form may cause toxic effects. We have developed a novel and facile synthesis method …


Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo Sep 2023

Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo

Journal of Electrochemistry

With a high cell-level specific energy and a low cost, lithium-sulfur (Li-S) battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by the rapidly declined storage performance during battery operation, as caused by irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this perspective, we propose to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces …


Stomatal Opening Efficiency Is Controlled By Cell Wall Organization In Arabidopsis Thaliana, Sedighe Keynia, Leila Jaafar, You Zhou, Charles T. Anderson, Joseph A. Turner Sep 2023

Stomatal Opening Efficiency Is Controlled By Cell Wall Organization In Arabidopsis Thaliana, Sedighe Keynia, Leila Jaafar, You Zhou, Charles T. Anderson, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Stomatal function in plants is regulated by the nanoscale architecture of the cell wall and turgor pressure, which together control stomatal pore size to facilitate gas exchange and photosynthesis. The mechanical properties of the cell wall and cell geometry are critical determinants of stomatal dynamics. However, the specific biomechanical functions of wall constituents, for example, cellulose and pectins, and their impact on the work required to open or close the stomatal pore are unclear. Here, we use nanoindentation in normal and lateral directions, computational modeling, and microscopic imaging of cells from the model plant Arabidopsis thaliana to investigate the precise …


Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad Sep 2023

Construction And Performance Optimization Of Bioconjugated Nanosensors For Early Detection Of Breast Cancer And Pro-Inflammatory Diseases, Pooja Gaikwad

Dissertations, Theses, and Capstone Projects

In recent years, nanosensors have emerged as a tool with strong potential in medical diagnostics. Single-walled carbon nanotube (SWCNT) based optical nanosensors have notably garnered interest due to the unique characteristics of their near-infrared fluorescence emission, including tissue transparency, photostability, and various chiralities with discrete absorption and fluorescence emission bands. Additionally, the optoelectronic properties of SWCNT are sensitive to the surrounding environment, which makes them suitable for in vitro and in vivo biosensing. Single-stranded (ss) DNA-wrapped SWCNTs have been reported as optical nanosensors for cancers and metabolic diseases. Breast cancer and cardiovascular diseases are the most common causes of death …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …