Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

13,942 Full-Text Articles 24,526 Authors 4,387,871 Downloads 175 Institutions

All Articles in Materials Science and Engineering

Faceted Search

13,942 full-text articles. Page 1 of 471.

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb 2024 American University in Cairo

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada 2024 Boise State University

High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature …


Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen 2024 Missouri University of Science and Technology

Application Of The Immobilized Low-Activity Waste Glass Corrosion Model To The Static Dissolution Of 24 Statistically-Designed Alkali-Borosilicate Waste Glasses, Sebastien N. Kerisit, James J. Neeway, Charmayne E. Lonergan, Benjamin Parruzot, Jarrod V. Crum, Richard C. Daniel, Gary L. Smith, R. Matthew Asmussen

Materials Science and Engineering Faculty Research & Creative Works

Glass corrosion models that capture the complex mechanisms of the glass-water reaction enable the prediction of nuclear waste glass durability in disposal scenarios. Parameterization of such models is challenging because of the need to capture changes in corrosion behavior with time, reaction conditions, and glass composition. Here, we describe and employ the ILAW (immobilized low-activity waste) glass corrosion model (IGCM) in geochemical simulations of static dissolution tests, at two temperatures (40 °C and 90 °C), for a matrix of 24 enhanced low-activity waste (eLAW) glasses statistically designed to cover a processable composition space defined by 8 major glass components (Al …


Machine Learning Prediction Of Photoluminescence In Mos2: Challenges In Data Acquisition And A Solution Via Improved Crystal Synthesis, Ethan Swonger, John Mann, Jared Horstmann, Daniel Yang 2024 Pepperdine University

Machine Learning Prediction Of Photoluminescence In Mos2: Challenges In Data Acquisition And A Solution Via Improved Crystal Synthesis, Ethan Swonger, John Mann, Jared Horstmann, Daniel Yang

Seaver College Research And Scholarly Achievement Symposium

Transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) possess unique electronic and optical properties, making them promising materials for nanotechnology. Photoluminescence (PL) is a key indicator of MoS2 crystal quality. This study aimed to develop a machine-learning model capable of predicting the peak PL wavelength of single MoS2 crystals based on micrograph analysis. Our limited ability to consistently synthesize high-quality MoS2 crystals hampered our ability to create a large set of training data. The project focus shifted towards improving MoS2 crystal synthesis to generate improved training data. We implemented a novel approach utilizing low-pressure chemical vapor deposition (LPCVD) combined with …


On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath 2024 Missouri University of Science and Technology

On The Use Of Machine Learning And Data-Transformation Methods To Predict Hydration Kinetics And Strength Of Alkali-Activated Mine Tailings-Based Binders, Sahil Surehali, Taihao Han, Jie Huang, Aditya Kumar, Narayanan Neithalath

Electrical and Computer Engineering Faculty Research & Creative Works

The escalating production of mine tailings (MT), a byproduct of the mining industry, constitutes significant environmental and health hazards, thereby requiring a cost-effective and sustainable solution for its disposal or reuse. This study proposes the use of MT as the primary ingredient (≥70%mass) in binders for construction applications, thereby ensuring their efficient upcycling as well as drastic reduction of environmental impacts associated with the use of ordinary Portland cement (OPC). The early-age hydration kinetics and compressive strength of MT-based binders are evaluated with an emphasis on elucidating the influence of alkali activation parameters and the amount of slag or cement …


Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović 2024 Missouri University of Science and Technology

Effect Of The Filler Morphology On The Crystallization Behavior And Dielectric Properties Of The Polyvinylidene Fluoride-Based Composite, Suzana Filipović, Nina Obradović, Cole Corlett, William G. Fahrenholtz, Martin Rosenschon, Ekkehard Füglein, Radovan Dojčilović, Dragana Tošić, Jovana Petrović, Antonije Đorđević, Branislav Vlahović, Vladimir B. Pavlović

Materials Science and Engineering Faculty Research & Creative Works

Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt.% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was …


Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa 2024 Kennesaw State University

Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa

Symposium of Student Scholars

This study explores the potential of GaN on Si thin films as a promising material for high-temperature semiconductor devices, owing to its impressive thermal properties and performance characteristics. Two GaN on Si samples were grown using Metal Organic Chemical Vapor Deposition (MOCVD), with different film thicknesses, and their potential for high-temperature applications was comprehensively assessed by performing Raman spectroscopy at various temperature levels. The experimental results provided valuable insights into the material's behavior at elevated temperatures. At 300°C, the GaN E2 (High) peak showed a Raman shift at 562.38 cm⁻¹ for high-thickness samples and 561.49 cm⁻¹ for low-thickness samples. …


Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar 2024 Missouri University of Science and Technology

Toward Smart And Sustainable Cement Manufacturing Process: Analysis And Optimization Of Cement Clinker Quality Using Thermodynamic And Data-Informed Approaches, Jardel P. Gonçalves, Taihao Han, Gaurav Sant, Narayanan Neithalath, Jie Huang, Aditya Kumar

Electrical and Computer Engineering Faculty Research & Creative Works

Cement manufacturing is widely recognized for its harmful impacts on the natural environment. In recent years, efforts have been made to improve the sustainability of cement manufacturing through the use of renewable energy, the capture of CO2 emissions, and partial replacement of cement with supplementary cementitious materials. To further enhance sustainability, optimizing the cement manufacturing process is essential. This can be achieved through the prediction and optimization of clinker phases in relation to chemical compositions of raw materials and manufacturing conditions. Cement clinkers are produced by heating raw materials in kilns, where both raw material compositions and processing conditions …


A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo 2024 Missouri University of Science and Technology

A Priori Procedure To Establish Spinodal Decomposition In Alloys, Simon Divilov, Hagen Eckert, Cormac Toher, Rico Friedrich, Adam C. Zettel, Donald W. Brenner, William G. Fahrenholtz, Douglas E. Wolfe, Eva Zurek, Jon Paul Maria, Nico Hotz, Xiomara Campilongo, Stefano Curtarolo

Materials Science and Engineering Faculty Research & Creative Works

Spinodal decomposition can improve a number of essential properties in materials, especially hardness. Yet, the theoretical prediction of the onset of this phenomenon (e.g., temperature) and its microstructure (e.g., wavelength) often requires input parameters coming from costly and time-consuming experimental efforts, hindering rational materials optimization. Here, we present a procedure where such parameters are not derived from experiments. First, we calculate the spinodal temperature by modeling nucleation in the solid solution while approaching the spinode boundary. Then, we compute the spinodal wavelength self-consistently using a few reasonable approximations. Our results show remarkable agreement with experiments and, for NiRh, the calculated …


Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry 2024 Purdue University

Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry

Materials Science and Engineering Faculty Publications and Presentations

The authors regret that after publication, they discovered that the dislocation loop number density was undercounted by a factor of 100 for both the PM-HIP and forged specimens. While this does not change the original major conclusions, this necessitates a change in the results presentation (Sections 3.2 and 4.1) and calculated hardening (Table 3, Fig. 5). Corrections to these affected sections are provided in this corrigendum.


A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li 2024 Communication University of Zhejiang

A Bayesian Approach For Lifetime Modeling And Prediction With Multi-Type Group-Shared Missing Covariates, Hao Zeng, Xuxue Sun, Kuo Wang, Yuxin Wen, Wujun Si, Mingyang Li

Engineering Faculty Articles and Research

In the field of reliability engineering, covariate information shared among product units within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions and design settings, exerts substantial influence on product lifetime prediction. The covariates shared within each group may be missing due to sensing limitations and data privacy issues. The missing covariates shared within the same group commonly encompass a variety of attribute types, such as discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type missing covariates at the individual level, and they have failed to thoroughly investigate the influence of …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang 2024 Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 201800, China

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan 2024 American University in Cairo

Assessing Adoption Barriers Of Sustainable Packaging In Egypt, Carol Ramses Morgan

Theses and Dissertations

Sustainable packaging has become an essential part of business decisions and corporate directions. With the rise of environmental damages due to improper waste management and unsustainable practices, businesses have a major responsibility to analyze their products’ life cycles and redesign them with sustainability in mind. Applying sustainable packaging could save companies large amounts of resources, therefore cutting costs, while also achieving the legal and social duty as a corporation towards society and the environment. Many developing countries, with specific focus on Egypt, have recently focused on legislative and corporate decisions in order to encourage more sustainable practices. Egypt’s new Waste …


Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil 2024 American University in Cairo

Applicability Of Using Bio-Receptive Concrete For Building Facades In Egypt, Gina Roupheil

Theses and Dissertations

The significant increase in carbon dioxide emissions caused by the construction industry is detrimental to our planet. This is rapidly increasing with the urbanization of cities that is gradually taking its toll on the available green spaces, which help in balancing such emissions. Recently, researchers have been trying to make use of bio-receptivity to create biomaterial systems that could be spread on building envelopes and support the growth of small plant species and microorganisms to establish on. Out of those materials, comes the concrete as a promising material for bio-colonization.

Within this context, this study aims at investigating the applicability …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng 2024 aState Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, Fujian, China

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi 2024 Louisiana State University and Agricultural and Mechanical College

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas McKibben, Michael Curtis, Olivia Maryon, Mone’t Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada 2024 Boise State University

Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas Mckibben, Michael Curtis, Olivia Maryon, Mone’T Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the …


Fly Ash Coated With Alumina Sol For Improving Strength And Thermal Insulation Of Mullite Porous Ceramics, Minghui Li, Peilin Li, Qingqing Gao, Saisai Li, Ruoyu Chen, Haiming Wen, Canhua Li 2024 Missouri University of Science and Technology

Fly Ash Coated With Alumina Sol For Improving Strength And Thermal Insulation Of Mullite Porous Ceramics, Minghui Li, Peilin Li, Qingqing Gao, Saisai Li, Ruoyu Chen, Haiming Wen, Canhua Li

Materials Science and Engineering Faculty Research & Creative Works

The manufacturing of mullite porous ceramics with high strength and low thermal conductivity was achieved through foam gel-casting processes using fly ash coated with alumina sol layers. This research aimed to investigate the effect of alumina sol concentration on foaming slurry rheology, as well as the influence of alumina sol coating layers on the microstructure, phase compositions and properties of the resulting mullite porous ceramics. Increasing the alumina sol concentration from 5 to 20 wt% improved both the viscosity and thixotropy of the foaming slurries while enhanced the shear thinning behavior. Porous ceramics prepared with fly ash coated with alumina …


Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine 2024 Missouri University of Science and Technology

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Progress In Energy: Usa–Canada Special Issue On Energy, Yun Hang Hu 2024 Michigan Technological University

Progress In Energy: Usa–Canada Special Issue On Energy, Yun Hang Hu

Michigan Tech Publications, Part 2

No abstract provided.


Digital Commons powered by bepress