Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

10,634 Full-Text Articles 17,944 Authors 4,883,996 Downloads 159 Institutions

All Articles in Materials Science and Engineering

Faceted Search

10,634 full-text articles. Page 1 of 361.

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2], Hengky Chandrahalim, Michael T. Dela Cruz 2022 Air Force Institute of Technology

Noncontact Liquid Crystalline Broadband Optoacoustic Sensors [U.S. Patent Us11366054b2], Hengky Chandrahalim, Michael T. Dela Cruz

Faculty Publications

An optoacoustic sensor includes a liquid crystal (LC) cell formed between top and bottom plates of transparent material. A transverse grating formed across the LC cell that forms an optical transmission bandgap. A CL is aligned to form a spring-like, tunable Bragg grating that is naturally responsive to external agitations providing a spectral transition regime, or edge, in the optical transmission bandgap of the transverse grating that respond to broadband acoustic waves. The optoacoustic sensor includes a narrowband light source that is oriented to transmit light through the top plate, the LC cell, and the bottom plate. The optoacoustic sensor ...


Bbt Side Mold Assy, Bill Hemphill 2022 East Tennessee State University

Bbt Side Mold Assy, Bill Hemphill

STEM Guitar Project’s BBT Acoustic Kit

This electronic document file set covers the design and fabrication information of the ETSU Guitar Building Project’s BBT (OM-sized) Side Mold Assy for use with the STEM Guitar Project’s standard acoustic guitar kit. The extended 'as built' data set contains an overview file and companion video, the 'parent' CADD drawing, CADD data for laser etching and cutting a drill &/or layout template, CADD drawings in AutoCAD .DWG and .DXF R12 formats of the centerline tool paths for creating the mold assembly pieces on an AXYZ CNC router, and support documentation for CAM applications including router bit specifications, feeds ...


Numerical Implementation And Validation Of A Viscoelastic-Plastic Material Model For Predicting Curing Induced Residual Stresses In Adhesive Bonded Joints, Akshat Agha, Fadi Abu-Farha 2022 Clemson University

Numerical Implementation And Validation Of A Viscoelastic-Plastic Material Model For Predicting Curing Induced Residual Stresses In Adhesive Bonded Joints, Akshat Agha, Fadi Abu-Farha

Publications

One of the main challenges in the joining of multi-material components is the assessment of the nature and magnitude of the residual stresses developing in the adhesive bond during the heat curing manufacturing process. Numerical modeling of these residual stresses can provide insights for making informed decisions related to (i) material substrate properties; (ii) adhesive properties i.e., low, medium, or high stiffness; (iii) bondline geometry i.e., bondline width and bead thickness; (iv) curing cycle characteristics; and (v) fixation design i.e., type, spacing, the number of joints. This work presents a cure history-dependent viscoelastic-plastic material description for the ...


Effect Of Oxygen Equivalence On The Strength And Toughness Of Ti-6al-4v Forgings, Kira Baylor, Clarissa Drouillard 2022 California Polytechnic State University, San Luis Obispo

Effect Of Oxygen Equivalence On The Strength And Toughness Of Ti-6al-4v Forgings, Kira Baylor, Clarissa Drouillard

Materials Engineering

Tensile testing and fracture toughness testing were conducted to establish a numerical relationship between interstitial content and performance in forged Ti-6Al-4V. The value of oxygen equivalence was used to represent the interstitial content by combining the weight percent of oxygen, carbon, and nitrogen. The correlation between oxygen equivalence and mechanical properties can be used to accurately predict the performance of forged parts. Samples of forged parts with varying levels of interstitial content were subjected to a recrystallization anneal at 75 F below the beta transus temperature to decrease microstructure variability across parts with a second anneal at 1300 F to ...


Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith 2022 California Polytechnic State University, San Luis Obispo

Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith

Materials Engineering

Stainless maraging steel has been proven to be an industry standard material for plastic injection molds. Its high hardness and corrosion resistance extend the lifetime of the tool. This alloy system is also well-suited to additive manufacturing, which can be utilized to form internal cooling channels, further increasing tool life. Using Rapid Alloy Development (RAD) Oerilkon METCO is developing a new composition of stainless maraging tool steel that has high hardness/strength, is corrosion resistant, and has additive-capable melting and solidification properties. This study tests the hardness and corrosion resistance of the new RAD alloys against the current market competitor ...


Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman 2022 California Polytechnic State University, San Luis Obispo

Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman

Materials Engineering

The Naval Surface Warfare Center, Port Hueneme Division, is interested in the development of non-destructive damage assessment of shipboard materials via drones at distance. Long Pulsed Thermography (LPT), a method of non-destructive evaluation, was investigated as a possible method for detecting damage in metals (5005h24 Al alloy and 1008 carbon steel) and composites (aramid fiber honeycomb sandwich structure) at distances from 0.5 m to 3.0 m. LPT was conducted using two 1000 W can lights to heat the samples, and a FLIR E8-XT thermal camera. The images were then analyzed using ImageJ software to determine if damage could ...


Processing And Characterization Of Silicon Nitride For Rapid And Low-Level Detection Of Water Pathogens, Arielle H. Buchanan, Logan A. Chai 2022 California Polytechnic State University, San Luis Obispo

Processing And Characterization Of Silicon Nitride For Rapid And Low-Level Detection Of Water Pathogens, Arielle H. Buchanan, Logan A. Chai

Materials Engineering

Water sanitation is a serious issue affecting the lives of many, and methods for assessing water cleanliness have been a major research interest for decades. Rapid and accurate water pathogen detection methods that can be performed in field applications have been a growing research focus, especially in low-income countries most affected by poor water quality. Silicon nitride was explored as a material for colorimetric water-pathogen sensing due to the large body of knowledge around its processing, and its isoelectric point. A bioassay of chlorophenol red-β-Dgalactopyranoside (CPRG) and β-galactosidase (β-gal) enzymes with Escherichia coli (E. coli) bacteria was used to examine ...


In Situ Marine Biodegradation Of Poly(Lactic) Acid And Thermoplastic Starch Blends, Brittany DeNicholas 2022 California Polytechnic State University, San Luis Obispo

In Situ Marine Biodegradation Of Poly(Lactic) Acid And Thermoplastic Starch Blends, Brittany Denicholas

Materials Engineering

Marine life has been suffering from macro- and microplastics since the inception of petroleum-based plastic. Bio-based biodegradable polymers such as PLA and TPS can help mitigate the damage done by petroleum plastics. Blending PLA and TPS can reduce the cost while preventing a significant effect on the material properties. PLA/TPS blend compositions such as 90/10, 80/20, 70/30 could be candidates for a solution. The PLA/TPS blends have been submerged in a marine environment at the Cal Poly Pier in Avila Beach for 8 weeks. Three sample sets containing three of each blend composition were collected ...


Citric Or Acetic Acid Effects On The Crosslinking Of Pvoh, Samuel Carr, Erika Szaldobagyi 2022 California Polytechnic State University, San Luis Obispo

Citric Or Acetic Acid Effects On The Crosslinking Of Pvoh, Samuel Carr, Erika Szaldobagyi

Materials Engineering

Transportation and shipping processes are the most dangerous times for food due to harsh handling and frequent temperature changes. Plain corrugated boxes cannot withstand the damp environment caused by melting ice that is used to keep foods cold and fresh. To minimize damage, a protective polymer film coating can be applied. These coatings can be unsafe when used with food and will lead to excess waste by limiting the recyclability of the boxes. The purpose of this project was to produce nontoxic crosslinked PVOH films to determine suitability for a cost effective, biodegradable, and repulpable corrugated box coating. Polyvinyl alcohol ...


Stabilization Of Palm Wood Using Water-Based Impregnation, David A. Barnes 2022 California Polytechnic State University, San Luis Obispo

Stabilization Of Palm Wood Using Water-Based Impregnation, David A. Barnes

Materials Engineering

Impregnation is a technique for stabilizing wood that involves saturating the material in a liquid and allowing it to cure before use. Stabilization methods such as this are employed for a variety of reasons; chiefly, the low dimensional stability of wood and palm means that they are subject to several failure modes that arise from changing environmental conditions, such as cracking, warping, and bending. Samples of Borassus flabellifer, black palm, provided by DuraPalm were impregnated with solvent-based and water-based stabilizers, and untreated wood samples used as a control group. Kop-Coat WoodYouth® Plus was used as a solvent-based stabilizer, and impregnation ...


Effects Of Release Materials And Temperature Ramp Rates On The Surface Finish Of Carbon-Fiber Composite Components, Sudeep Louis, Thucmy Dang, Ethan Schlocker 2022 California Polytechnic State University, San Luis Obispo

Effects Of Release Materials And Temperature Ramp Rates On The Surface Finish Of Carbon-Fiber Composite Components, Sudeep Louis, Thucmy Dang, Ethan Schlocker

Materials Engineering

Toray Advanced Composites is interested in improving their carbon fiber reinforced polymers (CFRP) manufacturing process by enhancing their control on the amount of surface roughness for varied customer preference. Surface roughness of CFRP is important in post-production processes including coating, priming, and painting. This project seeks to determine the effects of three release materials and two temperature ramp rates on the surface finish of CFRP. The release materials used were Tooltech, FEP, and Frekote 770-NC. The two initial temperature ramp rates were 1°F/min and 2°F/min. Surface roughness was measured using a profilometer and analyzed using Ra ...


Determining The Efficacy Of A Silica And Bacterial Cellulose Composite Model System, Hannah Martin, Daisy Kamp 2022 California Polytechnic State University, San Luis Obispo

Determining The Efficacy Of A Silica And Bacterial Cellulose Composite Model System, Hannah Martin, Daisy Kamp

Materials Engineering

Bacterial cellulose (BC) is a sustainable alternative to petroleum-based polymer films for synthetic leather applications. Synthesized by a symbiotic culture of bacteria and yeast, BC is a three-dimensional structure composed of cellulose microfibrils. However, pure BC lacks certain desirable properties such as high tensile strength. Previous studies have shown that loading BC with nanoparticles to form nanocomposites has improved BC’s mechanical properties. However, this was not studied as a function of particle size. This study focuses on using silica/BC nanocomposites to model the impact that particle size and silica soaking concentrations have on the uptake efficiency of these ...


Investigation Of The Effects Of Cladding Layers On Longitudinal And Transverse Mechanical Properties In Composite Laminates, Rachel Potratz, Tiffany Foo, Joseph Kamlet 2022 California Polytechnic State University, San Luis Obispo

Investigation Of The Effects Of Cladding Layers On Longitudinal And Transverse Mechanical Properties In Composite Laminates, Rachel Potratz, Tiffany Foo, Joseph Kamlet

Materials Engineering

The addition of cladding layers to composite laminates is used in industry to improve bond adhesion and the ease of manufacturing. However, there is no public data on the effects of cladding layers on the mechanical properties of composite components. To directly observe how cladding layers affect mechanical properties, four laminates with zero, one, two, and three cladding layers of twill fabric were added symmetrically to a biased core. The mechanical testing performed was tensile, short beam strength, and compression testing in the longitudinal and transverse directions. The measured strengths were related to the longitudinal properties of the core, and ...


Soil Degradation Of A Plastic Blend Of Opuntia Ficusindica Juice, Animal Protein And Beeswax, Isabel A. Gamez, Daniel R. Kava 2022 California Polytechnic State University, San Luis Obispo

Soil Degradation Of A Plastic Blend Of Opuntia Ficusindica Juice, Animal Protein And Beeswax, Isabel A. Gamez, Daniel R. Kava

Materials Engineering

Since the introduction of single use plastics in the early 1900s, their usage has increased exponentially. Unfortunately, due to this exponential increase there are negative environmental implications of their production, which requires further consideration. Currently, there are various waste disposal practices for SUPs, including landfilling, incineration, and recycling. Recent data revealed that only 14 % of plastic waste was recycled, with 40% of plastic waste being landfilled, while the rest of the plastic waste was incinerated or released to the environment at 14 % and 32 %, respectively. A potential solution to the plastic waste issue is developing a polymer that can easily ...


Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter 2022 California Polytechnic State University, San Luis Obispo

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin ...


Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier 2022 California Polytechnic State University, San Luis Obispo

Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier

Architectural Engineering

The authors of this report are Architectural Engineering undergraduate students at California Polytechnic State University, San Luis Obispo. Damping is a complex, experimentally derived value that is affected by many structural properties and has a profound effect on the dynamic response of structures. Deducing the inherent damping of a steel moment frame and affecting the damping ratio with viscous dampers are two topics explored in this paper. Dampers are commonly implemented in resilient structures that perform better in a design basis earthquake, reducing the seismic cost and downtime. Undergraduate coursework does not delve into the factors that affect damping and ...


On The Effects Of Additive Manufacturing Process Parameters On The Performance Of Hastelloy-X: A Neutron Diffraction Experiment And Crystal Plasticity Finite Element Model, Ahmed Aburakhia 2022 The University of Western Ontario

On The Effects Of Additive Manufacturing Process Parameters On The Performance Of Hastelloy-X: A Neutron Diffraction Experiment And Crystal Plasticity Finite Element Model, Ahmed Aburakhia

Electronic Thesis and Dissertation Repository

Additive manufacturing (AM) is increasingly becoming one of the favourable manufacturing techniques in various industries, such as transportation and energy. The reason for the extensive use of AM lies in the ability to use a wide range of process parameters for manufacturing engineering parts with complex geometries that cannot be effectively manufactured using traditional methods such as casting or forging. Understanding the role of process parameters is crucial for developing predictive models, as well as for manufacturing engineering components with the desired properties.

This research aims to characterize the influence of AM process parameters on the deformation mechanisms of Hastelloy-X ...


Text Summarization Towards Scientific Information Extraction, Abigail Keller 2022 DePaul University

Text Summarization Towards Scientific Information Extraction, Abigail Keller

College of Computing and Digital Media Dissertations

Despite the exponential growth in scientific textual content, research publications are still the primary means for disseminating vital discoveries to experts within their respective fields. These texts are predominantly written for human consumption resulting in two primary challenges; experts cannot efficiently remain well-informed to leverage the latest discoveries, and applications that rely on valuable insights buried in these texts cannot effectively build upon published results. As a result, scientific progress stalls. Automatic Text Summarization (ATS) and Information Extraction (IE) are two essential fields that address this problem. While the two research topics are often studied independently, this work proposes to ...


Utilization Of Steel Slag In Development Of Sustainable And Durable Concrete., Karthik Prabhu T Dr, Gowri Shankar M Mr., Jagadesh P Dr., Nagarajan V Dr. 2022 Coimbatore Institute of Technology, Coimbatore

Utilization Of Steel Slag In Development Of Sustainable And Durable Concrete., Karthik Prabhu T Dr, Gowri Shankar M Mr., Jagadesh P Dr., Nagarajan V Dr.

International Journal of Advanced Technology in Civil Engineering

This paper reflects the results of an experimental investigation of the strength, permeability, abrasion, carbonation, and shrinkage characteristics of concrete containing various percentages of steel slag as partial replacement of natural fine aggregates. M 30 Grade concrete was designed as per specific national specifications. Steel slag was used to replace natural sand in the range of 0– 50%. It was observed that the steel slag blended concrete with up to 50% substitution exhibited a comparable compressive and flexural strength when compared to the control specimens. From the Dorry’s abrasion test, it was noted that the specimens could be implemented ...


Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon 2022 Rowan University

Experimental Characterization And Manufacture Of Polymer Nanocomposite Dielectric Coatings For High-Temperature Superconductor Applications, Jacob Ryan Mahon

Theses and Dissertations

Increased implementation of high-temperature superconducting (HTS) power transmission has the potential to revolutionize the efficiency of electrical grids and help unlock a fully electric transportation infrastructure. Realizing the benefits of HTS systems has been impeded by a lack of available dielectric insulation materials that can 1) withstand the extreme cryogenic operating environment of superconductors and 2) demonstrate low temperature processing that is compatible with existing superconductor manufacturing methods. Solving this problem necessitates a high-performance dielectric material with multifunctional properties specifically suited for operation in HTS systems. A polyamide and silicon dioxide (PA/SiO2) nanocomposite material with exceptional thermal stability has ...


Digital Commons powered by bepress