Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,651 Full-Text Articles 7,763 Authors 1,422,360 Downloads 110 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,651 full-text articles. Page 6 of 147.

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun 2022 University of Texas at El Paso

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes 2022 University of Texas at El Paso

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere 2022 Clemson University

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi 2022 University of Arkansas, Fayetteville

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards 2022 The University of Western Ontario

Quantification Of Flows Emerging From Small Pores In Plane Walls, Matia Peter Edwards

Electronic Thesis and Dissertation Repository

Current membrane separation processes are limited in high production and high purity settings due to a trade-off between selectivity and permeance. Methods of creating nanoscale geometries in 2D materials are emerging and present an opportunity for fast, size selective mass transport that can be tailored to a wide array of applications. This thesis develops a method for quantifying flow through small pores in plane walls based on the behaviour of a solute dispersed in a downstream reservoir. This method is validated for a range of micropore diameters, for which flow rates can be calculated with confidence, and is shown to …


Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan 2022 University of New Mexico

Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan

Nanoscience and Microsystems ETDs

Metal additive manufacturing (AM) is a disruptive technology enabling the fabrication of complex and near-net-shaped parts by adding material layer-wise. It offers reduced lead production time. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical, and mold tooling. Despite the tremendous advantages of AM, some challenges still prevent this technology's adoption in high-standard applications. Anisotropy and inhomogeneity in the mechanical properties of the as-built parts and the existence of pores and lack-of-fusion defects are considered the main issues in directed energy deposition (L-DED) parts. Laser-engineered net shaping LENS® offers excellent possibilities to fabricate metal tools …


Efects Of Non‑Newtonian Viscosity On Arterial And Venous Fow And Transport, Sabrina Lynch, Nitesh Nama, C Alberto Figueroa 2022 University of Michigan

Efects Of Non‑Newtonian Viscosity On Arterial And Venous Fow And Transport, Sabrina Lynch, Nitesh Nama, C Alberto Figueroa

Department of Mechanical and Materials Engineering: Faculty Publications

It is well known that blood exhibits non-Newtonian viscosity, but it is generally modeled as a Newtonian fluid. However, in situations of low shear rate, the validity of the Newtonian assumption is questionable. In this study, we investigated differences between Newtonian and non-Newtonian hemodynamic metrics such as velocity, vorticity, and wall shear stress. In addition, we investigated cardiovascular transport using two different approaches, Eulerian mass transport and Lagrangian particle tracking. Non-Newtonian solutions revealed important differences in both hemodynamic and transport metrics relative to the Newtonian model. Most notably for the hemodynamic metrics, in-plane velocity and vorticity were consistently larger in …


Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng 2022 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;2. Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China;

Oligomeric Ionic Liquids: Bulk, Interface And Electrochemical Application In Energy Storage, Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng

Journal of Electrochemistry

Over recent years, oligomer ionic liquids (OILs), a novel class of ionic liquids, are becoming preferential electrolytes for high-performance energy-storage devices, such as supercapacitors with enhanced energy density and non-flammable lithium-ion batteries (LIBs). Herein, structures, properties, and their associations of the up-to-the-minute formulated OILs are systematically summarized and elaborately interpreted, especially for dicationic ionic liquids and tricationic ionic liquids. The physicochemical and electrochemical properties of OIL-based electrolytes are presented and analyzed, which are vitally important for supercapacitors and LIBs. Subsequently, the applications of OILs as electrolytes for supercapacitors and LIBs are summarized, with the comparisons of the energy-storage mechanisms and …


Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang 2022 1. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P.R. China;

Efficient Interface Enabled By Nano-Hydroxyapatite@Porous Carbon For Lithium-Sulfur Batteries, Jia-Yu Wang, Xue-Feng Tong, Qi-Fan Peng, Yue-Peng Guan, Wei-Kun Wang, An-Bang Wang, Nai-Qiang Liu, Ya-Qin Huang

Journal of Electrochemistry

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and …


Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He 2022 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China;2. China National Quality Supervision Testing Center for Industrial Explosive Materials, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu P.R. China;

Insight Into The Effects Of Cation Disorder And Surface Chemical Residues On The Initial Coulombic Efficiency Of Layered Oxide Cathode, Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He

Journal of Electrochemistry

Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted …


Enhanced Electron Correlation And Significantly Suppressed Thermal Conductivity In Dirac Nodal-Line Metal Nanowires By Chemical Doping, Amanda L. Coughlin, Zhiliang Pan, Jeonghoon Hong, Tongxie Zhang, Xun Zhan, Wenqian Wu, Dongyue Xie, Tian Tong, Thomas Ruch, Jean J. Heremans, Jiming Bao, Herbert A. Fertig, Jian Wang, Jeongwoo Kim, Hanyu Zhu, Deyu Li, Shixiong Zhang 2022 Indiana University

Enhanced Electron Correlation And Significantly Suppressed Thermal Conductivity In Dirac Nodal-Line Metal Nanowires By Chemical Doping, Amanda L. Coughlin, Zhiliang Pan, Jeonghoon Hong, Tongxie Zhang, Xun Zhan, Wenqian Wu, Dongyue Xie, Tian Tong, Thomas Ruch, Jean J. Heremans, Jiming Bao, Herbert A. Fertig, Jian Wang, Jeongwoo Kim, Hanyu Zhu, Deyu Li, Shixiong Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further …


Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan 2022 University of Nebraska Medical Center

Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, antiinflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles 2022 University of New Mexico - Main Campus

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Surface Treatment Of Polyester Fabric With Atmospheric Pressure Plasma, Srujana Yellapragada 2022 Florida International University

Surface Treatment Of Polyester Fabric With Atmospheric Pressure Plasma, Srujana Yellapragada

2022 MME Undergraduate Research Symposium

Polyethylene Terephthalate (PET) fabric, a recycled synthetic fiber, has been frequently studied to innovate increased usage in both the clothing and medical industry. Some include ways to dye the fabric so that it can be commercially used for the purpose of environmental conservation from frequent discard of nonrecyclable fabric. Some biomedical applications involve the application of plasma treatment to reduce bacteria adhesion and improve anti-bacterial properties on the fabric. However, neither has been successful due to a lack of understanding of the surface modification of PET fabric to enable such properties. The hypothesis is that hydrophobicity is an issue in …


Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, piyush grover 2022 University of Nebraska-Lincoln

Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements in the presence of a local inhomogeneity (“defect”). Numerical simulations reveal that depending upon its initial speed, an incoming solitary wave can get transmitted, captured, or reflected upon interaction with the defect. The dynamics are dominated by energy exchange between the wave and a breather mode localized at the defect. We derive a reduced-order two degree of freedom Hamiltonian model for wave-breather interaction and analyze it using dynamical systems techniques. Lobe dynamics analysis reveals the fine structure of phase space that leads to the complicated …


Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao 2022 University of Nebraska - Lincoln

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based on insights from a physics-based thermal simulation model. The motivation being to replace cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the model-derived thermal trends were …


A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. MacTaggart, Alexey Kamenskiy 2022 University of Nebraska-Lincoln

A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. Mactaggart, Alexey Kamenskiy

Department of Mechanical and Materials Engineering: Faculty Publications

Poor outcomes of peripheral arterial disease stenting are often attributed to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our goals were to develop a method of assessing the abrasiveness of peripheral nitinol stents and apply it to several commercial devices. Misago, AbsolutePro, Innova, Zilver, SmartControl, SmartFlex, and Supera stents were deployed inside electrospun nanofibrillar tubes with femoropopliteal artery-mimicking mechanical properties and subjected to cyclic axial compression …


Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto 2022 Clemson University

Design Of Arbitrary Planar Optical Devices With Full Phase Control Using Nanoimprinting Of Refractive Index, Matthew Panipinto

All Theses

Planar optical devices offer a lightweight solution to the constraints found in traditional optical devices. While subwavelength patterning of optics offers attractive performance and size, traditional fabrication methods demand a trade-off between resolution and throughput that presents a significant hurdle for the widespread use of subwavelength devices. Nanoimprinting of refractive index (NIRI) is a novel fabrication method pioneered in previous work that offers promise in mitigating the throughput issues that hamstring traditional fabrication methods. However, NIRI has not been shown to impart full $2\pi$ phase control in planar optical devices, nor has a method for fabricating arbitrary designs using the …


Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang 2022 Zhejiang University

Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the …


Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li 2022 School of Materials Science and Engineering, Nanyang Technological University,50 Nanyang Avenue, Singapore, 639798, Singapore;

Electrochemical Syntheses Of Nanomaterials And Small Molecules For Electrolytic Hydrogen Production, Jia-Qi Wei, Xiao-Dong Chen, Shu-Zhou Li

Journal of Electrochemistry

Hydrogen is a clean, efficient, renewable energy resource and the most promising alternative to fossil fuels for future carbon-neutral energy supply. Therefore, sustainable hydrogen production is highly attractive and urgently demanded, especially via water electrolysis that has clean, abundant precursors and zero emission. However, current water electrolysis is hindered by the sluggish kinetics and low cost/energy efficiency of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this regard, electrochemical synthesis offers prospects to raise the efficiency and benefit of water electrolysis by fabricating advanced electrocatalysts and providing more efficient/value-adding co-electrolysis alternatives. It is an eco-friendly and facile …


Digital Commons powered by bepress