Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,676 Full-Text Articles 7,855 Authors 1,422,360 Downloads 112 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,676 full-text articles. Page 4 of 149.

Nitric Oxide: Physiological Functions, Delivery, And Biomedical Applications, Syed Muntazir Andrabi, Navatha Shree Sharma, Anik Karan, S. M. Shatil Shahriar, Brent Cordon, Bing Ma, Jingwei Xie 2023 University of Nebraska Medical Center

Nitric Oxide: Physiological Functions, Delivery, And Biomedical Applications, Syed Muntazir Andrabi, Navatha Shree Sharma, Anik Karan, S. M. Shatil Shahriar, Brent Cordon, Bing Ma, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical …


Design And Development Of Ultrabroadband, High-Gain, And High-Isolation Thz Mimo Antenna With A Complementary Split-Ring Resonator Metamaterial, Ammar Armghan, Khaled Aliqab, Meshari Alsharari, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel 2023 Jouf University

Design And Development Of Ultrabroadband, High-Gain, And High-Isolation Thz Mimo Antenna With A Complementary Split-Ring Resonator Metamaterial, Ammar Armghan, Khaled Aliqab, Meshari Alsharari, Osamah Alsalman, Juveriya Parmar, Shobhit K. Patel

Department of Mechanical and Materials Engineering: Faculty Publications

The need for high-speed communication has created a way to design THz antennas that operate at high frequencies, speeds, and data rates. In this manuscript, a THz MIMO antenna is designed using a metamaterial. The two-port antenna design proposed uses a complementary splitring resonator patch. The design results are also compared with a simple patch antenna to show the improvement. The design shows a better isolation of 50 dB. A broadband width of 8.3 THz is achieved using this complementary split-ring resonator design. The percentage bandwidth is 90%, showing an ultrabroadband response. The highest gain of 10.34 dB is achieved …


Recent Advances In Electrochemical Impedance Spectroscopy-Based Pathogenic Bacteria Sensing, Tao Chen, Yuan-Hong Xu, Jing-Hong Li 2023 Institute of Biomedical Engineering; College of Life Sciences, Qingdao University, Qingdao 266071, China

Recent Advances In Electrochemical Impedance Spectroscopy-Based Pathogenic Bacteria Sensing, Tao Chen, Yuan-Hong Xu, Jing-Hong Li

Journal of Electrochemistry

Pathogenic bacteria have been throwing great threat on human health for thousands of years. Their real-time monitoring is in urgent need as it could effectively halt the spread of pathogenic bacteria and thus reducing the risk to human health. Up till now, diverse technologies such as electrochemistry, optics, piezoelectricity and calorimetry have been developed for bacteria sensing. Therein, electrochemical impedance spectroscopy (EIS)-based sensors show great potential in point-of-care bacterial analysis because of their low-cost, short read-out time, good reproducibility, and portable equipment construction. In this review, we will primarily summarize the typical applications of electrochemical impedance technology in bacteria sensing …


Restoration Of Normal Blood Flow In Atherosclerotic Arteries Promotes Plaque Stabilization, Morgan A. Schake, Ian McCue, Evan T. Curtis, Thomas J. Ripperda Jr., Samuel Harvey, Bryan T. Hackfort, Anna Fitzwater, Yiannis S. Chatzizisis, Forrest Kievit, Ryan M. Pedrigi 2023 University of Nebraska- Lincoln

Restoration Of Normal Blood Flow In Atherosclerotic Arteries Promotes Plaque Stabilization, Morgan A. Schake, Ian Mccue, Evan T. Curtis, Thomas J. Ripperda Jr., Samuel Harvey, Bryan T. Hackfort, Anna Fitzwater, Yiannis S. Chatzizisis, Forrest Kievit, Ryan M. Pedrigi

Department of Mechanical and Materials Engineering: Faculty Publications

Blood flow is a key regulator of atherosclerosis. Disturbed blood flow promotes atherosclerotic plaque development, whereas normal blood flow protects against plaque development. We hypothesized that normal blood flow is also therapeutic, if it were able to be restored within atherosclerotic arteries. Apolipoprotein E-deficient (ApoE-/-) mice were initially instrumented with a blood flow-modifying cuff to induce plaque development and then five weeks later the cuffwas removed to allowrestoration of normal blood flow. Plaques in decuffed mice exhibited compositional changes that indicated increased stability compared to plaques in mice with the cuff maintained. The therapeutic benefit of decuffingwas comparable …


Electronically Modulated Feni Composite By Ceo2 Porous Nanosheets For Water Splitting At Large Current Density, Ming-Yu Ding, Wen-Jie Jiang, Tian-Qi Yu, Xiao-Yan Zhuo, Xiao-Jing Qin, Shi-Bin Yin 2023 Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Guangxi Nanning 530004, China

Electronically Modulated Feni Composite By Ceo2 Porous Nanosheets For Water Splitting At Large Current Density, Ming-Yu Ding, Wen-Jie Jiang, Tian-Qi Yu, Xiao-Yan Zhuo, Xiao-Jing Qin, Shi-Bin Yin

Journal of Electrochemistry

Exploiting highly active and non-noble metal bifunctional catalysts at large current density is significant for the advancement of water electrolysis. In this work, CeO2 electronically structure modulated FeNi bimetallic composite porous nanosheets in-situ grown on nickel foam (NiFe2O4-Fe24N10-CeO2/NF) is synthesized. Electrochemical experiments show that the NiFe2O4-Fe24N10-CeO2/NF exhibited the outstanding activities toward both oxygen and hydrogen evolution reactions (OER and HER) (η1000 = 352 mV and η1000 = 429 mV, respectively). When assembled into a two-electrode system …


Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia 2023 Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guangxi, Guilin, 541004, China; Kunshan Superior Silk Screen Printing Material Co., LTD, Kunshan, 215300, Jiangsu, China

Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia

Journal of Electrochemistry

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and …


Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang 2023 Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Sichuan, Chengdu 610041, China

Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang

Journal of Electrochemistry

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 …


Exploring The Intersection Of Biology And Design For Product Innovations, Ajay P. Malshe, Salil Bapat, Kamlakar Rajurkar, Ang Ang, Jean-Marc Linares 2023 Purdue University

Exploring The Intersection Of Biology And Design For Product Innovations, Ajay P. Malshe, Salil Bapat, Kamlakar Rajurkar, Ang Ang, Jean-Marc Linares

Department of Mechanical and Materials Engineering: Faculty Publications

Design, development, productization, and applications of advanced product concepts are pressing for higher multifunctionality, resilience, and maximization of available resources equitably to meet the growing and continuing demands of global customers. These demands have further accelerated during the recent COVID- 19 pandemic and are continuing to be a challenge. Engineering designs are one of the most effective ways to endow products with functions, resilience, and sustainability. Biology, through millions of years of evolution, has met these acute requirements under severe resource and environmental constraints. As the manufacturing of products is reaching the fundamental limits of raw materials, labor, and resource …


Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi 2023 University of New Mexico - Main Campus

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi

Nanoscience and Microsystems ETDs

Although the exact cause of Alzheimer’s disease (AD) is still unknown, it is widely considered that the accumulation of amyloid plaques composed of the amyloid-β (Aβ) peptide in the brain is linked to neurodegeneration. Co-localization of viral DNA with Aβ plaques, the association of brain infection and AD, and research indicating the protective effect of Aβ against bacteria and fungi in mice and human cells have led to the hypothesis that Aβ expression and deposition may be central to its function as an antimicrobial peptide (AMP). In my thesis research, we seek to elucidate how Aβ functions as an AMP …


Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial 2023 University of New Mexico

Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial

Electrical and Computer Engineering ETDs

Radionuclide spectroscopic sensor data is analyzed with minimal power consumption through the use of neuromorphic computing architectures. Memristor crossbars are harnessed as the computational substrate in this non-conventional computing platform and integrated with CMOS-based neurons to mimic the computational dynamics observed in the mammalian brain’s visual cortex. Functional prototypes using spiking sparse locally competitive approximations are presented. The architectures are evaluated for classification accuracy and energy efficiency. The proposed systems achieve a 90% true positive accuracy with a high-resolution detector and 86% with a low-resolution detector.


Reducing Agglomeration Of Lab-Synthesized And Functionalized Barium Titanate Nanoparticle Composites, Jessica N. Domrzalski 2023 University of New Mexico

Reducing Agglomeration Of Lab-Synthesized And Functionalized Barium Titanate Nanoparticle Composites, Jessica N. Domrzalski

Nanoscience and Microsystems ETDs

Barium titanate (BTO) has been extensively studied for its promise in increasing device performance with its high dielectric constant. With the world moving toward miniaturization, research in nanotechnology is paving a road for the future of electronics, energy storage, and batteries. A challenge in understanding BTO’s potential lies in the particles’ tendency to agglomerate. Nanoparticles behave differently than their bulk counterparts, so understanding size effects is a crucial step in understanding BTO. In this work, BTO nanoparticles are synthesized via a hydrolysis reaction, then functionalized via a ligand exchange reaction to reduce agglomeration. BTO is added to epoxy composites at …


Self-Assembly Of Exfoliated Graphene Flakes As Anticorrosive Coatings For Additive Manufactured Steels, Kaleb Hood, Wen Qian, Yi Xia, Savannah Krupa, Annie Dao, Sarah Ahmed, Samuel Olson, Nam Nguyen, Joseph A. Turner, Jun Jiao 2023 Portland State University

Self-Assembly Of Exfoliated Graphene Flakes As Anticorrosive Coatings For Additive Manufactured Steels, Kaleb Hood, Wen Qian, Yi Xia, Savannah Krupa, Annie Dao, Sarah Ahmed, Samuel Olson, Nam Nguyen, Joseph A. Turner, Jun Jiao

Department of Mechanical and Materials Engineering: Faculty Publications

This study demonstrates the feasibility of using liquid exfoliation of expandable graphite into multilayer exfoliated graphene flakes (EGFs) to form a self-assembled thin film on an air–water interface. The film can coat the surface of additive manufactured (AM) steel substrates to enhance surface properties, specifically AM 316 stainless-steel (AM316), AM 8620 steel (AM8620), and samples of the same alloys made by conventional manufacturing (CM) processes. Liquid exfoliation offers a high yield route for an EGF coating that can cover up to 95% of the sample surface with a single application. The thin, flexible EGFs can coat a rough AM metal …


Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen 2023 University of Wisconsin-Milwaukee

Utilizing Fluorescent Nanoscale Particles To Create A Map Of The Electric Double Layer, Quintus Owen

Theses and Dissertations

The interactions between charged particles in solution and an applied electric field follow several models, most notably the Gouy-Chapman-Stern model, for the establishment of an electric double layer along the electrode, but these models make several assumptions of ionic concentrations and an infinite bulk solution. As more scientific progress is made for the finite and single molecule reactions inside microfluidic cells, the limitations of the models become more extreme. Thus, creating an accurate map of the precise response of charged nanoparticles in an electric field becomes increasingly vital. Another compounding factor is Brownian motion’s inverse relationship with size: large easily …


Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu 2023 Tongji University, Shanghai Jiao Tong University

Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu

Department of Mechanical and Materials Engineering: Faculty Publications

Disease biomarker analysis has become a crucial tool for diagnosing and evaluating disease prognosis, especially with the increasing understanding of diseases at the molecular level. Abnormalities in various biomarkers can indicate diseased states, and can be used to rapidly and specifically detect and quantify diseases using optical biosensing techniques (Gao et al., 2023). Optical biosensing techniques have several advantages over traditional methods including higher sensitivity, specificity, and faster analysis times (Plikusiene and Ramanaviciene, 2023). It also allows for non-invasive sample collection. With advancements in optical biosensing technology, many medical conditions including cancers, infectious diseases, and autoimmune disorders can be accurately …


Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu 2023 Tongji University, Shanghai Jiao Tong University

Editorial: Disease Biomarker Analysis Based On Optical Biosensing, Tianshu Chen, Fanben Meng, Binwu Ying, Xiaoli Zhu

Department of Mechanical and Materials Engineering: Faculty Publications

Disease biomarker analysis has become a crucial tool for diagnosing and evaluating disease prognosis, especially with the increasing understanding of diseases at the molecular level. Abnormalities in various biomarkers can indicate diseased states, and can be used to rapidly and specifically detect and quantify diseases using optical biosensing techniques (Gao et al., 2023). Optical biosensing techniques have several advantages over traditional methods including higher sensitivity, specificity, and faster analysis times (Plikusiene and Ramanaviciene, 2023). It also allows for non-invasive sample collection. With advancements in optical biosensing technology, many medical conditions including cancers, infectious diseases, and autoimmune disorders can be accurately …


Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri 2023 Chapman University

Region-Specified Inverse Design Of Absorption And Scattering In Nanoparticles By Using Machine Learning, Alex Vallone, Nooshin M. Estakhri, Nasim Mohammadi Estrakhri

Engineering Faculty Articles and Research

Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced …


Considering The Influence Of Coronary Motion On Artery‑Specific Biomechanics Using Fluid–Structure Interaction Simulation, Nicholas A. T. Fogell, Miten Patel, Pan Yang, Roosje M. Ruis, David B. Garcia, Jarka Naser, Fotios Savvopoulos, Clint Davies Taylor, Anouk L. Post, Ryan M. Pedrigi, Ranil de Silva, Rob Krams 2023 Imperial College London

Considering The Influence Of Coronary Motion On Artery‑Specific Biomechanics Using Fluid–Structure Interaction Simulation, Nicholas A. T. Fogell, Miten Patel, Pan Yang, Roosje M. Ruis, David B. Garcia, Jarka Naser, Fotios Savvopoulos, Clint Davies Taylor, Anouk L. Post, Ryan M. Pedrigi, Ranil De Silva, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid–structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within …


A Threshold Helium Leakage Detection Switch With Ultra Low Power Operation, Sulaiman Mohaidat, Fadi M. Alsaleem 2023 University of Nebraska-Lincoln

A Threshold Helium Leakage Detection Switch With Ultra Low Power Operation, Sulaiman Mohaidat, Fadi M. Alsaleem

Department of Mechanical and Materials Engineering: Faculty Publications

Detecting helium leakage is important in many applications, such as in dry cask nuclear waste storage systems. This work develops a helium detection system based on the relative permittivity (dielectric constant) difference between air and helium. This difference changes the status of an electrostatic microelectromechanical system (MEMS) switch. The switch is a capacitive-based device and requires a very negligible amount of power. Exciting the switch’s electrical resonance enhances the MEMS switch sensitivity to detect low helium concentration. This work simulates two different MEMS switch configurations: a cantilever-based MEMS modeled as a single-degreefreedom model and a clamped-clamped beam MEMS molded using …


Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang 2023 University of Nebraska-Lincoln

Crystalline–Amorphous Nanostructures: Microstructure, Property And Modelling, Binqiang Wei, Lin Li, Lin Shao, Jian Wang

Department of Mechanical and Materials Engineering: Faculty Publications

Crystalline metals generally exhibit good deformability but low strength and poor irradiation tolerance. Amorphous materials in general display poor deformability but high strength and good irradiation tolerance. Interestingly, refining characteristic size can enhance the flow strength of crystalline metals and the deformability of amorphous materials. Thus, crystalline–amorphous nanostructures can exhibit an enhanced strength and an improved plastic flow stability. In addition, high-density interfaces can trap radiation-induced defects and accommodate free volume fluctuation. In this article, we review crystalline–amorphous nanocomposites with characteristic microstructures including nanolaminates, core–shell microstructures, and crystalline/amorphous-based dual-phase nanocomposites. The focus is put on synthesis of characteristic microstructures, deformation …


Plasmon Enhanced Quantum Properties Of Single Photon Emitters With Hybrid Hexagonal Boron Nitride Silver Nanocube Systems, Mohammadjavad Dowran, Andrew Butler, Suvechhya Lamichhane, Adam Erickson, Ufuk Kilic, Sy_Hwang Liou, Christos Argyropoulos, A. Laraoui 2023 University of Nebraska-Lincoln

Plasmon Enhanced Quantum Properties Of Single Photon Emitters With Hybrid Hexagonal Boron Nitride Silver Nanocube Systems, Mohammadjavad Dowran, Andrew Butler, Suvechhya Lamichhane, Adam Erickson, Ufuk Kilic, Sy_Hwang Liou, Christos Argyropoulos, A. Laraoui

Department of Mechanical and Materials Engineering: Faculty Publications

Hexagonal boron nitride (hBN) has emerged as a promising ultrathin host of single photon emitters (SPEs) with favorable quantum properties at room temperature, making it a highly desirable element for integrated quantum photonic networks. One major challenge of using these SPEs in such applications is their low quantum efficiency. Recent studies have reported an improvement in quantum efficiency by up to two orders of magnitude when integrating an ensemble of emitters such as boron vacancy defects in multilayered hBN flakes embedded within metallic nanocavities. However, these experiments have not been extended to SPEs and are mainly focused on multiphoton effects. …


Digital Commons powered by bepress