Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,852 Full-Text Articles 8,036 Authors 1,425,719 Downloads 112 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,852 full-text articles. Page 1 of 157.

Plasma Ion Source, Nathan K. Davis 2024 Portland State University

Plasma Ion Source, Nathan K. Davis

Student Research Symposium

It is well known that a plasma can be created with both high input power and ultra low pressure. The challenge is in creating these same plasma characteristics with both lower power while maintaining a higher pressure. We have developed an ion beam by careful manipulation of magnetic and electric fields. Magnetic fields are used to accelerate ambient electrons to ionize the low pressure gas into a plasma. Electric fields are used to extract the ions into a focused beam. To achieve these initial ionizations, an artificial vacuum is created to reach low enough pressures to ionize the gas. A …


Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg 2024 University of Arkansas, Fayetteville

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Biophysical Model Of Retraction Motor Neurons And Their Modification By Operant Conditioning, Maria Rasheed 2024 The Texas Medical Center Library

Biophysical Model Of Retraction Motor Neurons And Their Modification By Operant Conditioning, Maria Rasheed

Dissertations & Theses (Open Access)

Operant conditioning (OC) is a form of associative learning in which an animal modifies its behavior based on the consequences that follow that behavior. Despite its ubiquity, the underlying mechanisms of OC are poorly understood. Insights into the mechanisms of OC can be obtained by studying Aplysia feeding behavior as it can be modified by OC. This behavior is mediated by a central pattern generator (CPG) network in the buccal ganglia that contains a relatively small number of neurons. This CPG generates rhythmic motor patterns (BMPs) that move food into the gut by closing a tongue-like structure (i.e., radula) during …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu 2024 a School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu 2024 State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Electrocatalytic Cyclopropanation Of Active Methylene Compounds, Liang-Hua Jie, Hai-Chao Xu

Journal of Electrochemistry

The development of novel strategies to access cyclopropanes has become increasingly important due to the vital role of these three-membered ring structures in synthetic intermediates, natural products, and pharmaceuticals. Herein, we present an electrocatalytic method for the synthesis of cyclopropanes through intermolecular dehydrogenative annulation of active methylene compounds and arylalkenes. This electrochemical process requires no chemical oxidants, allowing for a speedy access to various functionalized cyclopropanes from inexpensive and readily available materials.


Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng 2024 Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China

Electrochemical Syntheses Of Aryl-Substituted Benzothiophenes And Phenanthrenes Using Benzenediazonium Salts As The Aryl Radical Precursors, Li-Yuan Lan, Yang-Ye Jiang, Raymond Daniel Little, Cheng-Chu Zeng

Journal of Electrochemistry

Aryl-substituted benzothiophene and phenanthrene are important structural units in medicinal chemistry and materials science. Although extensive effort has been devoted to prepare these compounds and a variety of approaches have been developed to construct the 2-substituted benzothiophene core structure, environmental-friendly and efficient synthetic means are still desired. Based on our previous electrochemical Minisci-type arylation reaction with aryl diazonium salt as the aryl precursor, as well as the work from König’s group, herein, we described the use of paired electrolysis to achieve 2-aryl benzothiophenes and 9-aryl phenanthrenes employing benzenediazonium salts as the aryl radical precursors. Initially, 2-methylthiobenzendiazonium salt 1a and 4-methylbenzene …


Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin 2024 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao 2024 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan 2024 Department of Chemistry, College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS); Engineering Research Center of Electrochemical Technologies of Ministry of Education; Xiamen University; Xiamen 361005, China

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


Oral Administration Of Ph-Responsive Polymeric Nanoparticles Based On Zein And Their Therapeutic Potential On Cancer., Bruno Alejandro Valades-Aguilar, José Raúl Rangel-López, Jennifer Citlally Leos-Rivera, Moisés Armides Franco-Molina, María Cristina Rodríguez-Padilla, Diana Ginette Zárate-Triviño 2024 Universidad Autónoma de Nuevo León

Oral Administration Of Ph-Responsive Polymeric Nanoparticles Based On Zein And Their Therapeutic Potential On Cancer., Bruno Alejandro Valades-Aguilar, José Raúl Rangel-López, Jennifer Citlally Leos-Rivera, Moisés Armides Franco-Molina, María Cristina Rodríguez-Padilla, Diana Ginette Zárate-Triviño

Research Symposium

Background: Zein is a water-insoluble protein extracted from the endosperm of corn seeds, this polymer is an attractive matrix to encapsulate hydrophilic compounds because of its high proportion of hydrophobic amino acids, making it a potential smart delivery material for several treatments in the biopharmaceutical industry. nanoparticles have been used as drug delivery systems for the improvement of oral bioavailability; however, the strategies of nanoparticle obtention need the addition of stabilizers. in this study, a modified method to obtain zein nanoparticles was developed.

Methods: Zein nanoparticles (ZNps) were made by a thermal treatment and precipitated into ovalbumin at a ratio …


La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin 2024 The University of Texas Rio Grande Valley

La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin

Research Symposium

Early cancer detection is paramount for effective treatment and potential cures. This research explores the application of perovskite materials, specifically Sr2+-doped Lanthanum Cobaltite (La1-xSrxCoO3) nanomaterials, in cancer detection, with a focus on rats as an experimental model. The ferroelectric nature of these materials, synthesized through a combination of sol-gel and molten-salt processes, was examined at varying Sr2+ doping levels (1-20 wt%). Rigorous characterization, employing X-ray diffraction and scanning electron microscopy, confirmed the uniform morphology of nano cubes, laying the foundation for subsequent investigations. The magnetic properties of the perovskite nanoparticles were probed, suggesting their potential as a diagnostic tool for …


Study On R&D Strategies In Nanoscale Science And Technology Of Powerhouses And Insights, Wenyue BIAN, Xingjie LIANG, Chunlei GE, Zhongyang HUI, Xiaoqi JIA, Si LIU, Jing YE, Xiaoyi CHEN, Wenjun WANG, Huajun JU 2024 Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Study On R&D Strategies In Nanoscale Science And Technology Of Powerhouses And Insights, Wenyue Bian, Xingjie Liang, Chunlei Ge, Zhongyang Hui, Xiaoqi Jia, Si Liu, Jing Ye, Xiaoyi Chen, Wenjun Wang, Huajun Ju

Bulletin of Chinese Academy of Sciences (Chinese Version)

Nanoscale science and technology (nano S&T) are at the frontier of global strategic high-tech competition. After examining nearly 160 strategy and planning documents released by scientific and technological powerhouses from 2000 to 2023, the study finds ten common approaches adopted by the powerhouses to advance nano S&T as follows. (1) Recognizing nano S&T as a key area for the economy and global competition. (2) Establishing cross-department organizations to meet the cross-disciplinary nature of nano S&T. (3) Developing strategic plans to guide the development of nano S&T and implementing major programs with significant investment. (4) Establishing multidisciplinary nano S&T research centers …


6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew 2024 Washington University in St. Louis

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu 2024 Louisiana Tech University

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu

Doctoral Dissertations

With the development of technology and engineering, nanotechnology has been a multidisciplinary scientific field applied in nearly all science areas, including medicine, genetics, food industry, robotics. In this respect, nanomedicine has gained increasing attention and been a useful, effective therapy for cancer diagnosis, gene transfer, and drug delivery. To design an ideal nano drug delivery system with controlled drug releasing and improved encapsulated drug’s pharmacokinetic and pharmacodynamic profiles, hydrogels and polymer composites have witnessed increased research interest during the last decades. Recently, numerous polymers have been studied to fabricate the ideal wound dressing with biocompatibility, biodegradability, porous structural, and suitable …


Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu 2024 Louisiana Tech University

Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu

Doctoral Dissertations

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population. Part of the glioma microenvironment are microglia, resident immune cells of the CNS that were thought to be involved in the pathogenesis of diverse neurodegenerative diseases. Though it remains uncertain what triggers microglial activation in these disorders, targeting and tracking microglial functions using nanotools like Quantum Dots (QDs) could help us elucidate them in such neurological diseases. This research focuses on the comparative study of different QDs formulations and their selective uptake by brain microglia in primary cultures …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng 2024 aState Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, Fujian, China

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang 2024 Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 201800, China

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Smartphone Color Error Analysis, Mackenna Hawes 2024 Purdue University

Smartphone Color Error Analysis, Mackenna Hawes

The Journal of Purdue Undergraduate Research

No abstract provided.


The Top Ten Scientific Questions In Electrochemistry, Chinese Society of Electrochemistry 2024 Chinese Chemical Society | Xiamen University

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma 2024 Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Digital Commons powered by bepress