Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

4112 Full-Text Articles 5060 Authors 1341030 Downloads 81 Institutions

All Articles in Aerospace Engineering

Faceted Search

4112 full-text articles. Page 1 of 123.

Internet Media In Technological Risk Amplification: Plutonium On Board The Cassini-Huygens Spacecraft, Christine M. Rodrigue 2017 University of New Hampshire

Internet Media In Technological Risk Amplification: Plutonium On Board The Cassini-Huygens Spacecraft, Christine M. Rodrigue

RISK: Health, Safety & Environment

The author discusses how the Cassini controversy demonstrates the power of the Internet, particularly listservs and Usenet groups, and how this resource offers political activists an opportunity to affect the agendas of risk management policy decision-makers.


Simulation Model Of An Automatic Commercial Ice Machine, Haithem Murgham, David Myszka, Vijay Bahel, Rajan Rajendran, Kurt Knapke, Suresh Shivashankar, Kyaw Wynn 2017 University of Dayton

Simulation Model Of An Automatic Commercial Ice Machine, Haithem Murgham, David Myszka, Vijay Bahel, Rajan Rajendran, Kurt Knapke, Suresh Shivashankar, Kyaw Wynn

David Myszka

Automatic commercial ice-making machines that produce a batch of cube ice at regular intervals are known as “cubers." Such machines are commonly used in food service, food preservation, hotel, and health service industries. The machines are typically rated for the weight of ice produced over a 24-hour period at ambient air temperatures of 90°F and water inlet temperature of 70°F.

These cubers typically utilize an air-cooled, vapor-compression cycle to freeze circulating water flowing over an evaporator grid. Once a sufficient amount ice is formed, a valve switches to enable a harvest mode, where the compressor’s discharge gas ...


In-House Fabrication Of Temperature Sensitive Paint For Turbine Cooling Research, Mayur D. Patel, Mark A. Ricklick 2017 Embry-Riddle Aeronautical University

In-House Fabrication Of Temperature Sensitive Paint For Turbine Cooling Research, Mayur D. Patel, Mark A. Ricklick

Beyond: Undergraduate Research Journal

The Temperature Sensitive Paint (TSP) is a widely used method in measuring and visualizing flow separation and heat transfer. Compared to the cost and time consumption needed for methods such as pitot tubes, temperature sensitive paint is a cheaper alternative. Due to high usage in College of Engineering research projects, it was determined that in house fabrication of temperature sensitive paint would reduce time and cost limitations. For initial stages, literature research was performed to determine the recipe of intensity based TSP with luminophore and polymer binder that operated optimum at temperatures from 0-100°C. Europium III thenoyltrifluoroacetonate was determined ...


A General Algorithm For The Numerical Solution Of Hypersingular Boundary Integral Equations, Massimo Guiggiani, Geeta Krishnasamy, Thomas J. Rudolphi, F. J. Rizzo 2017 Università di Pisa

A General Algorithm For The Numerical Solution Of Hypersingular Boundary Integral Equations, Massimo Guiggiani, Geeta Krishnasamy, Thomas J. Rudolphi, F. J. Rizzo

Thomas Rudolphi

The limiting process that leads to the formulation of hypersingular boundary integral equations is first discussed in detail. It is shown that boundary integral equations with hypersingular kernels are perfectly meaningful even at non-smooth boundary points, and that special interpretations of the integrals involved are not necessary. Careful analysis of the limiting process has also strong relevance for the development of an appropriate numerical algorithm. In the second part, a new general method for the evaluation of hypersingular surface integrals in the boundary element method (BEM) is presented. The proposed method can be systematically applied in any BEM analysis, either ...


Boundary Element Solutions To Wave Scattering By Surface Irregularities On A Fluid-Solid Interface, S. Shenoy, Thomas J. Rudolphi, F. J. Rizzo 2017 Iowa State University

Boundary Element Solutions To Wave Scattering By Surface Irregularities On A Fluid-Solid Interface, S. Shenoy, Thomas J. Rudolphi, F. J. Rizzo

Thomas Rudolphi

The boundary element method is used to solve fluid-solid half-space problems with fluid-filled dimples and air bubbles on the solid surface. The problems, formulated in the Fourier (frequency) domain, are described by the fullspace three-dimensional acoustic and elastodynamic boundary integral equations (BIE), with pressure and displacement serving as primary variables. The techniques developed are general and may be with any kind of incident wave, however, plane waves are used in all numerical experiments. The equations governing the acoustic region are first converted mathematically to equations like those of an elastic region. The two regions are coupled and solved for the ...


Professional Pilot Commercial Off-The-Shelf (Cots) Efb Usage, Policies And Reliability, Tyler A. Babb 2017 Middle Tennessee State University

Professional Pilot Commercial Off-The-Shelf (Cots) Efb Usage, Policies And Reliability, Tyler A. Babb

International Journal of Aviation, Aeronautics, and Aerospace

Electronic Flight Bags (EFBs) have flooded the aviation industry. Commercial off-the-shelf (COTS) tablets are now commonly used by pilots as EFBs. Operators use EFBs for ease of use, faster access to information, to remove weight from the aircraft, and to increase pilots’ quality of life. Identifying trends in EFB usage among professional pilots could benefit operators and universities with flight training programs. EFB policies and procedures may vary among operators but achieve FAA compliance. This study identified these policies and procedures. The types of devices and software vary, and identifying these devices and software could be useful. This research used ...


The Effects Of Using Noise Reduction Turbofan Engine Nozzle Designs On A Turbojet Engine, Donald Bartlett 2017 Southern Illinois University

The Effects Of Using Noise Reduction Turbofan Engine Nozzle Designs On A Turbojet Engine, Donald Bartlett

Journal of Applied Sciences and Arts

Abstract

Aircraft noise is a complex topic which is projected to increase with the increasing number of aircraft and size of the engines. Turbine-powered aircraft produce sounds that are considered pollutants at certain decibel levels. Turbofan engines are inherently quieter than turbojet engines for a given level of thrust. The purpose of this research is to determine if current turbofan noise reduction nozzles could reduce the amount of noise for turbojet engines at two different thrust levels. Three turbofan engine nozzles were designed and tested on a turbojet engine. Decibel levels of 30 frequencies for each of the nozzles were ...


Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali 2017 The University of Western Ontario

Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali

Electronic Thesis and Dissertation Repository

The performance of an aeroengine is influenced by the performance of the compressor system. A typical compressor consists of multistage axial compressors followed by a centrifugal stage. Here, a high-speed centrifugal and an axial stage are investigated in terms of turbulence modelling, flow blockage and rotor-stator (R-S) gap using the commercial software ANSYS CFX. The curvature corrected Shear stress transport (SST-CC) model of Smirnov and Menter is investigated for the first time in a high-speed centrifugal stage in terms of curvature and rotation effects. The SST-CC predictions are compared with the standard SST, Speziale, Sarkar, and Gatski Reynolds stress model ...


Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson 2017 University of Vermont

Investigation Of Pyrolysis Gas Chemistry In An Inductively Coupled Plasma Facility, Corey Tillson

Graduate College Dissertations and Theses

The pyrolysis mechanics of Phenolic Impregnated Carbon Ablators (PICA) makes it a valued material for use in thermal protection systems for spacecraft atmospheric re-entry. The present study of the interaction of pyrolysis gases and char with plasma gases in the boundary layer over PICA and its substrate, FiberForm, extends previous work on this topic that has been done in the UVM 30 kW Inductively Coupled Plasma (ICP) Torch Facility. Exposure of these material samples separately to argon, nitrogen, oxygen, air, and carbon dioxide plasmas, and combinations of said test gases provides insight into the evolution of the pyrolysis gases as ...


Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic 2017 AAR Aerospace Consulting, LLC

Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

Global range air navigation implies non-stop flight between any two airports on Earth. Such effort would require airplanes with the operational air range of at least 12,500 NM which is about 40-60% longer than anything existing in commercial air transport today. Air transportation economy requires flying shortest distance, which in the case of spherical Earth are Orthodrome arcs. Rhumb-line navigation has little practical use in long-range flights, but has been presented for historical reasons and for comparison. Database of about 50 major international airports from every corner of the world has been designed and used in testing and route ...


Enhancement Of Volumetric Specific Impulse In Htpb/Ammonium Nitrate Mixed Hybrid Rocket Systems, Jacob Ward Forsyth 2016 Utah State University

Enhancement Of Volumetric Specific Impulse In Htpb/Ammonium Nitrate Mixed Hybrid Rocket Systems, Jacob Ward Forsyth

All Graduate Plan B and other Reports

Hybrid rocket systems are safer and have higher specific impulse than solid rockets. However, due to large oxidizer tanks and low regression rates, hybrid rockets have low volumetric efficiency and very long longitudinal profiles, which limit many of the applications for which hybrids can be used. This research investigates a method for increasing the volumetric efficiency and improving the form factor of hybrid rocket systems by a non-combustible load of solid oxidizer to the hybrid fuel grain. Including such oxidizers increases the regression rate of the fuel and lowers the amount of fluid oxidizer needed for optimal combustion. This type ...


Cubesat Adcs Validation And Testing Apparatus, Jacob Stevens 2016 Western Michigan University

Cubesat Adcs Validation And Testing Apparatus, Jacob Stevens

Honors Theses

The WALI team at Western Michigan University requested a test environment to validate their CubeSat’s de-tumbling control system and hardware. The test environment required a Helmholtz cage and spherical air bearing. The Helmholtz cage provides an adjustable magnetic field to simulate low earth orbit; the spherical air bearing simulates the friction free environment the CubeSat will experience in space. In conjunction, the two components create an adjustable system that simulates a satellite in low earth orbit.


Attitude Determination Control Testing System (Helmholtz Cage And Air Bearing), Nicolas Theoret 2016 Western Michigan University

Attitude Determination Control Testing System (Helmholtz Cage And Air Bearing), Nicolas Theoret

Honors Theses

The WALI team at Western Michigan University requested a test environment to validate their CubeSat’s de-tumbling control system and hardware. The test environment required a Helmholtz cage and spherical air bearing. The Helmholtz cage provides an adjustable magnetic field to simulate low earth orbit; the spherical air bearing simulates the friction free environment the CubeSat will experience in space. In conjunction, the two components create an adjustable system that simulates a satellite in low earth orbit.


Development Of Fault Tolerant Adaptive Control Laws For Aerospace Systems, Andres E. Perez Rocha 2016 Embry-Riddle Aeronautical University

Development Of Fault Tolerant Adaptive Control Laws For Aerospace Systems, Andres E. Perez Rocha

Dissertations and Theses

The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate ...


Accumulator Volume Sensor Final Project Report, Chris Naughton, Kinwei Yu, Michael George 2016 California Polytechnic State University, San Luis Obispo

Accumulator Volume Sensor Final Project Report, Chris Naughton, Kinwei Yu, Michael George

Mechanical Engineering

Accumulator Volume Sensing Team has developed two sensor designs aimed at detecting the position of the piston within a 4024 accumulator. The two designs include the use of a Renishaw LMA10 magnetic encoder and a SpectraSymbol HotPot linear potentiometer. The magnetic encoder solution drastically increases the accuracy of sensing the piston position compared to the current solutions of both a string-pot and linear variable differential transformer while costing slightly less. The linear potentiometer seeks to provide a solution that drastically decreases the cost compared to the present sensing methods. Both designs call for a modification to one half of the ...


Generation And Microwave Scattering Diagnostics Of Small Volume Plasmas, Jordan Chase Sawyer 2016 University of Tennessee, Knoxville

Generation And Microwave Scattering Diagnostics Of Small Volume Plasmas, Jordan Chase Sawyer

Doctoral Dissertations

This dissertation focuses on the development of novel generation and microwave scattering diagnostic techniques for small volume plasmas. The small volume plasmas presented in this work fall under the two generalized categories: 1) laser-induced plasmas and 2) non-equilibrium microdischarges.

Chapter I presents the application of microwave scattering theory to laser-induced breakdown in air. The MIE solution to Maxwell’s equations is employed to reveal three distinct phases of the evolution of the laser-induced breakdown in air. Chapter II presents a novel method of quantifying thresholds for laser-induced breakdown. These thresholds are established via total electron number measurement from dielectric calibration ...


Accuracy Of Flight Delays Caused By Low Ceilings And Visibilities At Chicago’S Midway And O’Hare International Airports, Kerry Blodgett 2016 Iowa State University

Accuracy Of Flight Delays Caused By Low Ceilings And Visibilities At Chicago’S Midway And O’Hare International Airports, Kerry Blodgett

Meteorology Senior Theses

In 2013 the Federal Aviation Administration found that over 28,000 flights were delayed out of the Chicago’s Midway and O’Hare International Airports and that 69% of flights are delayed by weather. This paper examines the accuracy of flight delays caused by low ceilings and visibilities from November 2015 to March 2016. Terminal Aerodrome Forecasts were used to determine the cause of delays while Automated Surface Observing System was used to determine the accuracy of each flight delay. It was found that low ceilings and visibilities caused 75% of the flights delayed by weather and that 13% of ...


Analytical Modeling And Numerical Simulation Of A Thermoelectric Generator Including Contact Resistances, Shripad Dhoopagunta 2016 Western Michigan University

Analytical Modeling And Numerical Simulation Of A Thermoelectric Generator Including Contact Resistances, Shripad Dhoopagunta

Master's Theses

With increasing demand for energy harvesting systems, research has been conducted in different areas in which Thermoelectric Generators (TEG) find their way into the top of many available resources. Out of many energy harvesting systems available, TEGs are comparatively easier to study, to manufacture and also to comprehend while producing enough energy for applications they find use in. They are solid state devices, meaning; they do not have any moving parts and hence makes them durable. Most of the energy that goes out of the automobile as exhaust is reused to power the TEGs. In most of the works that ...


Analytical Study Of Miniature Thermoelectric Device, Mohammed Dhannoon 2016 Western Michigan University

Analytical Study Of Miniature Thermoelectric Device, Mohammed Dhannoon

Master's Theses

Miniature thermoelectric devices (TE) have been regarded as hopeful devices to attain efficient cooling in microprocessors and other small-scale devices. To recognize the performances of miniature thermoelectric coolers, a thermoelectric cooling module is theoretically analyzed. Particular attention is paid to the impact of the thermoelectric element length effect and the substrate material type influence on the cooling performance. The electrical contact resistance and thermal contact are taken into account.

Furthermore, miniature thermoelectric is compared with large thermoelectric, and effective material properties of miniature thermoelectric are studied. The obtained results also demonstrate power density (cooling/heating power per unit area of ...


Modeling, Optimizing And Testing Thermoelectric Generators For Liquid-To-Liquid Low Grade Waste Heat Recovery, Ali Eyddan Hamil 2016 Western Michigan University

Modeling, Optimizing And Testing Thermoelectric Generators For Liquid-To-Liquid Low Grade Waste Heat Recovery, Ali Eyddan Hamil

Master's Theses

The use of thermoelectric generators (TEGs) for producing electricity from low grade waste heat is thought to be a great solution in the future to reduce the power generation cost because of their advantages of reliability and environmental friendliness. Therefore, the current project aims to study thermoelectric generators for low grade waste heat recovery. In this work, a single unit cell of liquid to liquid thermoelectric generator attached with heat exchangers (heat sinks) is modeled using an internal flow. Its optimum design is obtained based on heat sink optimization and the optimal design method. An analytical model of four unit ...


Digital Commons powered by bepress