Freespan Analysis For Subsea Pipeline Integrity Management Strategy,
2023
Universitas Indonesia
Freespan Analysis For Subsea Pipeline Integrity Management Strategy, Nurul Hadi, Muhammad Helmi, Edo Cathaputra, Dedi Priadi, Donanta Dhaneswara
Journal of Materials Exploration and Findings (JMEF)
Abstract. Over a rough seabed or on seabed subject to scour, freespans can occur when contact between a subsea pipeline and the seabed is lost over an acceptable distance. When this exceeds the allowable freespan length, design stresses can be exceeded, and a vortex induced vibration (VIV) response can be initiated, resulting in the risk of fatigue failure. If this is not predicted and controlled properly, it will affect pipeline integrity, leading to expensive rectification and intervention work. Freespan analysis consisted primarily of a screening check in which the as-found freespans from Remotely Operated Vehicle (ROV) or multibeam Side …
Lesker Pvd75 E-Beam/Thermal Evaporator (Pvd-02) Standard Operating Procedure,
2023
University of Pennsylvania
Lesker Pvd75 E-Beam/Thermal Evaporator (Pvd-02) Standard Operating Procedure, David S. Barth, Jason A. Röhr
Standard Operating Procedures
Standard Operating Procedure for the Lesker PVD75 E-beam/Thermal Evaporator (PVD-02) located at the Quattrone Nanofabrication Facility within the Singh Center for Nanotechnology at the University of Pennsylvania
Application Of Multi-Scale Computational Techniques To Complex Materials Systems,
2023
University of Kentucky
Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif
Theses and Dissertations--Chemical and Materials Engineering
The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …
High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery,
2022
University of Nebraska-Lincoln
High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang
Mechanical & Materials Engineering Faculty Publications
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a …
Dynamic Perimeter Movement Using Uavs And Robotic Systems,
2022
Kennesaw State University
Dynamic Perimeter Movement Using Uavs And Robotic Systems, Nayeli Barrett, John Lawson, Billy Kihei
Symposium of Student Scholars
For this study, we propose a Dynamic Perimeter Movement system that has a user-operated UAV to identify GPS coordinate points using land markers such as April Tags. These markers would be used to identify the perimeter of a road work zone. Once the work zone is determined, autonomous robotic traffic cones would disperse to position themselves around the perimeter determined by coordinate points. As the work zone progresses the UAV would periodically update the perimeter to reposition robotic traffic cones. These traffic cones will operate using a Pure Pursuit system as a means to navigate.
Exosomes Derived From Differentiated Human Admsc With The Schwann
Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions,
2022
University of Nebraska Medical Center
Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan
Mechanical & Materials Engineering Faculty Publications
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, antiinflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. …
Designing And Cnc Machine Valve Sub-Plates And Quick Mounts For Hydraulic Power Training Systems,
2022
Morehead State University
Designing And Cnc Machine Valve Sub-Plates And Quick Mounts For Hydraulic Power Training Systems, Connor Maxam
Morehead State Theses and Dissertations
A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Connor Maxam on November 22, 2022.
Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review,
2022
Air Force Institute of Technology
Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review, Russell A. Rowe, Paul G. Allison, Anthony N. Palazotto, Keivan Davami
Faculty Publications
This review paper discusses the formation and propagation of adiabatic shear bands in nickel-based superalloys. The formation of adiabatic shear bands (ASBs) is a unique dynamic phenomenon that typically precedes catastrophic, unpredicted failure in many metals under impact or ballistic loading. ASBs are thin regions that undergo substantial plastic shear strain and material softening due to the thermo-mechanical instability induced by the competitive work hardening and thermal softening processes. Dynamic recrystallization of the material’s microstructure in the shear region can occur and encourages shear localization and the formation of ASBs. Phase transformations are also often seen in ASBs of ferrous …
The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices,
2022
Purdue University
The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices, William Graber, Aniket Roy Chowdhury
The Journal of Purdue Undergraduate Research
No abstract provided.
Revealing The Pulse-Induced Electroplasticity
By Decoupling Electron Wind Force,
2022
Zhejiang University
Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang
Mechanical & Materials Engineering Faculty Publications
Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the …
Tuning The Mechanical Behavior Of Density-Graded Elastomeric Foam Structures Via Interlayer Properties.,
2022
Rowan University
Tuning The Mechanical Behavior Of Density-Graded Elastomeric Foam Structures Via Interlayer Properties., Kazi Z Uddin, Ibnaj A Anni, George Youssef, Behrad Koohbor
Henry M. Rowan College of Engineering Faculty Scholarship
The concept of density-graded foams has been proposed to simultaneously enhance strain energy dissipation and the load-bearing capacities at a reduced structural weight. From a practical perspective, the fabrication of density-graded foams is often achieved by stacking different foam densities. Under such conditions, the adhesive interlayer significantly affects the mechanical performance and failure modes of the structure. This work investigates the role of different adhesive layers on the mechanical and energy absorption behaviors of graded flexible foams with distinct density layers. Three adhesive candidates with different chemical, physical, and mechanical characteristics are used to assemble density-graded polyurea foam structures. The …
A Nanofiber-Embedded Microfluidic Platform For Studying
Neurobiology,
2022
University of Nebraska Medical Center
A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie
Mechanical & Materials Engineering Faculty Publications
Due to their biomimetic properties, electrospun nanofibers have been widely used in neurobiology studies. However, mechanistic understanding of cell-nanofiber interactions is challenging based on the current in vitro culture systems due to the lack of control of spatiotemporal patterning of cells and difficulty in monitoring single cell behavior. To overcome these issues, we apply microfluidic technology in combination with electrospun nanofibers for in vitro studies of interactions between neurons and nanofiber materials. We demonstrate a unique nanofiber embedded microfluidic device which contains patterned aligned or random electrospun nanofibers as a new culture system. With this device, we test how different …
Lesker Pvd75 E-Beam Evaporator (Pvd-04) Standard Operating Procedure,
2022
University of Pennsylvania
Lesker Pvd75 E-Beam Evaporator (Pvd-04) Standard Operating Procedure, David J. Jones, Jason A. Röhr
Standard Operating Procedures
Standard Operating Procedure for the Lesker PVD75 E-beam Evaporator (PVD-04) located at the Quattrone Nanofabrication Facility within the Singh Center for Nanotechnology at the University of Pennsylvania
Preface For Millard Beatty,
2022
University of Nebraska-Lincoln
Preface For Millard Beatty, E. Baesu, Roger Fosdick
Mechanical & Materials Engineering Faculty Publications
Professor Beatty has contributed a wide variety of research papers and book articles on topics in finite elasticity, continuum mechanics and classical mechanics, including some fundamental experimental work. His works are clear and informative and expose a didactic quality. In the following, we briefly touch upon some of the highlights of his research involvement throughout the years.
Me-Em Enewsbrief, September 2022,
2022
Michigan Technological University
Me-Em Enewsbrief, September 2022, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University
Department of Mechanical Engineering-Engineering Mechanics eNewsBrief
No abstract provided.
Impulse, Fall 2022,
2022
South Dakota State University
Impulse, Fall 2022, University Marketing And Communications, Jerome J. Lohr College Of Engineering
Impulse (Jerome J. Lohr College of Engineering Publication)
2 | Sanjeev Kumar Takes Helm as College’s 12th Dean
5 | College Develops Partnerships in India, Turkey
6 | Faculty News
8 | Aerofly — Profs, Alum Partner To Build Unique Drone
10 | Researchers Find Way to Extend Produce Shelf Life
12 | SDSU Claims National Title in Quarter-Scale Tractors
14 | Nation’s Top ASCE Chapter Housed at SDSU
16 | National Geo-Video Title Won By State Students
18 | Summer Brings Engineering Camps to Campus
20 | Haleigh Timmer — Money on the Court, In Classroom
22 | Daniel Burkhalter — Day in the Life of Student-Athlete …
Machine Learning-Based Peripheral Artery Disease
Identification Using Laboratory-Based Gait Data,
2022
University of Nebraska-Lincoln
Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers
Mechanical & Materials Engineering Faculty Publications
Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …
Machine Learning-Based Peripheral Artery Disease
Identification Using Laboratory-Based Gait Data,
2022
University of Nebraska-Lincoln
Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Basheer Qolomany, Iraklis I. Pipinos, Fadi Alsaleem, Sara A. Myers
Mechanical & Materials Engineering Faculty Publications
Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …
Design Of An Innovative Hybrid Sandwich Protective Device For
Offshore Structures,
2022
University of Nebraska-Lincoln
Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi
Mechanical & Materials Engineering Faculty Publications
Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …
Influence Of Defects On In-Plane Dynamic Properties Of Hexagonal Ligament Chiral Structures,
2022
Old Dominion University
Influence Of Defects On In-Plane Dynamic Properties Of Hexagonal Ligament Chiral Structures, Ning An, Xunwen Su, Dongmei Zhu, Mileta M. Tomovic
Engineering Technology Faculty Publications
Although the six-ligament chiral structure has many unique properties, due to its special structure, the stress concentration is prone to defects. In addition, additive manufacturing is also prone to defects. This paper studies the effect of defects, which is helpful for the better application of the six-ligament chiral structure. Several new six-ligament chiral structures with random and concentrated defects were designed to explore the effects of the defects on the in-plane dynamic properties. The structures were studied with the finite element ANSYS/LSDYNA numerical simulation and experimental methods. According to the defect-free six-ligament chiral structures exhibiting different deformation modes at different …