Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

10,258 Full-Text Articles 14,479 Authors 2,175,838 Downloads 119 Institutions

All Articles in Materials Science and Engineering

Faceted Search

10,258 full-text articles. Page 1 of 280.

Development Of Carbon Fiber-Modified Electrically Conductive Concrete For Implementation In Des Moines International Airport, Alireza Sassani, Halil Ceylan, Sunghwan Kim, Ali Arabzadeh, Peter C. Taylor, Kasthurirangan Gopalakrishnan 2018 Iowa State University

Development Of Carbon Fiber-Modified Electrically Conductive Concrete For Implementation In Des Moines International Airport, Alireza Sassani, Halil Ceylan, Sunghwan Kim, Ali Arabzadeh, Peter C. Taylor, Kasthurirangan Gopalakrishnan

Civil, Construction and Environmental Engineering Publications

This paper reports on the procedures of mix design preparation, production, placement, and performance evaluation of the first electrically conductive concrete (ECON) heated-pavement system (HPS) implemented at a U.S. airport. While ECON has drawn considerable attention as a paving material for multi-functional pavements, including HPS, the majority of ECON HPS applications and studies have been limited to laboratory scale or include materials/methods that do not conform to regulations enforced by airfield construction practices. Carbon fiber-reinforced ECON provides a promising prospective for application in airfield pavements. In this study, ECON mixtures were prepared in the laboratory using varying cementitious ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik 2018 Louisiana State University and Agricultural and Mechanical College

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers 2018 The University of Southern Mississippi

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even ...


Using First-Principles Calculations To Screen For Fragile Magnetism: Case Study Of Lacrge 3 And Lacrsb 3, Manh Cuong Nguyen, Valentin Taufour, Sergey L. Bud’ko, Paul C. Canfield, Vladimir P. Antropov, Cai-Zhuang Wang, Kai-Ming Ho 2018 Ames Laboratory

Using First-Principles Calculations To Screen For Fragile Magnetism: Case Study Of Lacrge 3 And Lacrsb 3, Manh Cuong Nguyen, Valentin Taufour, Sergey L. Bud’Ko, Paul C. Canfield, Vladimir P. Antropov, Cai-Zhuang Wang, Kai-Ming Ho

Ames Laboratory Accepted Manuscripts

In this paper, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe3 and LaCrSb3 compounds. The magnetic, electronic, elastic, and mechanical properties of LaCrGe3 and LaCrSb3 at ambient condition are studied by first-principles density-functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe3 and LaCrSb3 are also investigated. The ferromagnetism in LaCrGe3 is rather fragile, with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGe3 is found to be the proximity ...


Investigating Phase Transition Temperatures Of Size Separated Gadolinium Silicide Magnetic Nanoparticles, Shivakumar G. Hunagund, Shane M. Harstad, Ahmed A. El-Gendy, Shalbh Gupta, Vitalij K. Pecharsky, Ravi L. Hadimani 2018 Virginia Commonwealth University

Investigating Phase Transition Temperatures Of Size Separated Gadolinium Silicide Magnetic Nanoparticles, Shivakumar G. Hunagund, Shane M. Harstad, Ahmed A. El-Gendy, Shalbh Gupta, Vitalij K. Pecharsky, Ravi L. Hadimani

Ames Laboratory Accepted Manuscripts

Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the ...


Influence Of Impact Conditions On Feedstock Deposition Behavior Of Cold-Sprayed Fe-Based Metallic Glass, Constance Ziemian, Wendelin Wright, David E. Cipoletti 2018 Bucknell University

Influence Of Impact Conditions On Feedstock Deposition Behavior Of Cold-Sprayed Fe-Based Metallic Glass, Constance Ziemian, Wendelin Wright, David E. Cipoletti

Faculty Journal Articles

Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48 Mo14 Cr15 Y2 C15 B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and ...


An Examination Of The Au-Ni Phase Diagram For Magneto-Plasmonic Applications, Christopher C. Walker, John Carothers, Michael Roulier, Brandon Rowell 2018 University of Tennessee, Knoxville

An Examination Of The Au-Ni Phase Diagram For Magneto-Plasmonic Applications, Christopher C. Walker, John Carothers, Michael Roulier, Brandon Rowell

University of Tennessee Honors Thesis Projects

No abstract provided.


Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi 2018 State University of New York College at Buffalo - Buffalo State College

Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi

Creative Studies Graduate Student Master's Projects

This project uses an action research centered study protocol to examine the effects of a problem-based learning exercise related to bloodstain pattern interpretation in a crime scene processing and general criminalistics class taught as part of an upper division forensic chemistry major in a four year college. The goal is to apply design principles and creative problem solving methods directly adapted to a project involving interpreting a set of crime scene photographs depicting blood spatter and with the aid of guided exercises in ideation and design, lead students into the development of alternate theories of how the bloodstains were created ...


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack 2018 University of Arkansas, Fayetteville

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition ...


Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan 2018 University of Arkansas, Fayetteville

Fabrication And Characterization Of Graphene Based 2d Materials For Supercapacitors, Anishkumar Manoharan

Theses and Dissertations

Supercapacitors have attracted a lot attention due to their efficient energy storage. In comparison to batteries, supercapacitors have high capacitance, energy, and power densities per unit mass than conventional capacitors. Carbon based materials are most promising in supercapacitor application due to their outstanding physical and electrochemical behavior. In this work, a facile method to synthesize a nanocomposite electrode consisting of annealed carbon from carbon ink and MoS2 was demonstrated. Effects of various aqueous and solid electrolytes were studied. It was found that the nanocomposite electrode with 10% MoS2 and 1M Na2SO4 as the aqueous electrolyte tested using the three electrode ...


Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun 2018 University of Arkansas, Fayetteville

Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun

Theses and Dissertations

Natural and synthetic polymers and biopolymers have been studied for a variety of applications in food emulsion, biopharmaceutical purification, tissue engineering, and biosensor. The structure and property of polymers and biopolymers are critically important to determine their functions. Molecular dynamics (MD) simulations have a unique advantage to explore the structure and property of polymers and biopolymers from the molecular level. In the dissertation, MD simulations were conducted to study the mechanisms of various biological and chemical processes controlled by polymers and biopolymers based on real-world experimental results.

Seven heptapeptides have been screened from a peptide library in our earlier study ...


Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu 2018 University of Arkansas, Fayetteville

Near Bandgap Two-Photon Excited Luminescence Of Inas Quantum Dots, Xian Hu

Theses and Dissertations

Semiconductor quantum dots (QDs) confine carriers in three dimensions, resulting in atomic-like energy levels as well as size-dependent electrical and optical properties. Self-assembled III-V QD is one of the most studied semiconductor QDs thanks to their well-established fabrication techniques and versatile optical properties. This dissertation presents the photoluminescence (PL) study of the InAs/GaAs QDs with both above bandgap continuous-wave excitation (one-photon excitation) and below-bandgap pulse excitation (two-photon excitation). Samples of ensemble QDs, single QD (SQD), and QDs in a micro-cavity, all grown by molecular beam epitaxy, are used in this study. Morphology of these samples was examined using atomic ...


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal 2018 University of Arkansas, Fayetteville

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current ...


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan 2018 University of Arkansas, Fayetteville

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant ...


Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang 2018 University of Arkansas, Fayetteville

Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang

Theses and Dissertations

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are investigated. A hydrophobic/anti-reflective surface coating which not only repels water from the top glass of a PV panel but at the same time reduces its light reflectance is investigated. COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar energy harvest from 400nm-700nm. The addition of a polymer layer on these ellipsoid rods broadens the light incident angle from 23° to 34°, from which light can be efficiently absorbed. Based on ...


The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang 2018 University of Arkansas, Fayetteville

The Incorporation Of Graphene To Lithium Cobalt Oxide As A Cathode To Improve The Performance Of Lithium Ion Batteries, Kenan Wang

Theses and Dissertations

One of the objectives of this thesis work was to investigate the cathode performance of lithium cobalt oxide (LiCoO2) incorporated with graphene powder in lithium ion batteries (LIBs). Graphene powder was incorporated into cathode materials to enhance the performance of LIBs. The other objective was to impede the construction of a solid electrolyte interphase (SEI) sheet using graphene sheet coating on its cathode.

The results of this work show that adding graphene powder improved the performance of LiCoO¬2 as a cathode material. With the incorporation of different weight percentages of graphene powder, the LiBs showed distinct changes in their ...


Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir 2018 University of Arkansas, Fayetteville

Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir

Theses and Dissertations

Investigating semiconductor materials and devices at the nanoscale has become crucial in order to maintain the exponential development in today’s technology. There is a critical need for making devices lower in power consumption and smaller in size. Nanoscale semiconductor materials provide a powerful platform for optoelectronic device engineers. They own interesting properties which include enhanced photoconductivity and size-tunable interband transitions.

In this research, different types of nanostructures were investigated for optoelectronic devices: nanocrystals, nanowires, and thin-films. First, lead selenide nanocrystals with narrow bandgap were synthesized, size-tailored, and functionalized with molecular ligands for the application of uncooled near-infrared photodetectors. The ...


Development And Applications Of Polyglyoxylate Self-Immolative Polymers, Bo Fan 2018 The University of Western Ontario

Development And Applications Of Polyglyoxylate Self-Immolative Polymers, Bo Fan

Electronic Thesis and Dissertation Repository

Self-immolative polymers (SIPs) are relatively recent class of stimuli-responsive and degradable polymers that have attracted significant attention in the past several years. SIPs consist of polymer backbones and stimuli-responsive end-caps at one or both polymer termini. Upon detection of a stimulus, the decomposition of the end-cap leads to complete end-to-end depolymerization. Polyglyoxylates were introduced as a new class of polyacetal based SIPs by our group in 2014. Compared with other SIPs, polyglyoxylates have two advantages including: 1) readily available monomers and 2) low toxic depolymerization products. These advantages may allow polyglyoxylates to be used in a wide range of applications ...


Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington 2018 The University of Western Ontario

Development Of Nanostructures By Atomic And Molecular Layer Deposition, Andrew P. Lushington

Electronic Thesis and Dissertation Repository

Atomic layer deposition (ALD) is a thin film deposition technique that has a rich history of being an enabling technique. This vapor phase deposition process can produce a variety of thin films and nanostructures. ALD is based on sequential, self-limiting reactions and provides angstrom level control over film growth. Furthermore, ALD allows for conformal deposition on high-aspect ratio structures and can provide tunable film composition. As nanotechnology marches forward, the development of nanomaterials has significantly advanced. Additional functionality can be imparted to nanomaterials by using surface modification techniques. Given the advantages of ALD, this technique has become a powerful tool ...


Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen 2018 The University of Western Ontario

Fabrication Of 3d Conjugated Polymer Structures Via Vat Polymerization Additive Manufacturing, Andrew T. Cullen

Electronic Thesis and Dissertation Repository

Conjugated polymers are a class of electromechanically active materials that can produce motion in response to an electric potential. This motion can be harnessed to perform mechanical work, and therefore these materials are particularly well suited for use as sensors and actuators in microelectromechanical systems. Conventional methods to fabricate conjugated polymer actuators result in planar morphologies that limit fabricated devices to simplistic linear or bending actuation modes. To overcome this limitation, this work develops a conjugated polymer formulation and associated additive manufacturing method capable of realizing three-dimensional conductive polymer structures. A light-based additive manufacturing technique known as vat polymerization is ...


Digital Commons powered by bepress