Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

4,460 Full-Text Articles 6,360 Authors 708,145 Downloads 54 Institutions

All Articles in Materials Science and Engineering

Faceted Search

4,460 full-text articles. Page 1 of 71.

Influence Of The Temperature On Flow-Induced Crystallization Of Isotactic Polypropylene And Propylene-Ethylene Random Copolymer, Hugo BOITOUT 2014 University of Nebraska - Lincoln

Influence Of The Temperature On Flow-Induced Crystallization Of Isotactic Polypropylene And Propylene-Ethylene Random Copolymer, Hugo Boitout

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

When flow is applied on a semi-crystalline polymer melt, it can greatly impact how it crystallizes its final properties. Therefore, it is crucial to understand the basic mechanism of flow induced crystallization (FIC). Only then will it be possible to predict final properties from the type of resin and processing conditions. Polypropylene is one of the most widely used polymers. Its processing generally involves subjecting the melt to intense flow fields, so FIC commonly occurs.

This study investigates the influence of temperature of shear and crystallization on the FIC behavior of isotactic polypropylene (iPP). Temperature is one of the main ...


Thermophonon, Nikolai A. Zarkevich 2014 Iowa State University

Thermophonon, Nikolai A. Zarkevich

Ames Laboratory Software

ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following.

  • Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as ...


Microstructure And Magnetic Behavior Studies Of Processing-Controlled And Composition-Modified Fe-Ni And Mn-Al Alloys, Yunlong Geng 2014 University of Nebraska - Lincoln

Microstructure And Magnetic Behavior Studies Of Processing-Controlled And Composition-Modified Fe-Ni And Mn-Al Alloys, Yunlong Geng

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications.

In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from ...


Fabrication Of 3d Ultrafine Fibrous Protein Structures Via Freeze-Drying, Yiling Huang 2014 University of Nebraska - Lincoln

Fabrication Of 3d Ultrafine Fibrous Protein Structures Via Freeze-Drying, Yiling Huang

Textiles, Merchandising and Fashion Design: Dissertations, Theses, & Student Research

In this thesis, ultrafine fibrous 3D matrices were fabricated using three different proteins (soy protein, wool keratin, and chicken feather keratin) via freeze-drying. Protein matrices are preferable for tissue engineering compared to matrices made from synthetic material because of their similarity to native extracellular matrices. Due to their cell-binding motifs, natural proteins are also recognized as more biocompatible compared. Freeze-drying, which is a simple method used to produce 3D sponge matrices, was employed in this study to fabricate 3D fibrous matrices in a controlled manner. The inner structures of the 3D matrices fabricated ranged from film to fibers, and the ...


Effect Of Plasticizer On Oxygen Permeability Of Cast Polylactic Acid (Pla) Films Determined Using Dynamic Accumulation Method, Kurniawan Yuniarto, Bruce A. Welt, ARIS PURWANTO, Hadi Karia Purwadaria, Ayman Abdellatief, Titi C. Sunarti, Setyo Purwanto 2014 Rochester Institute of Technology

Effect Of Plasticizer On Oxygen Permeability Of Cast Polylactic Acid (Pla) Films Determined Using Dynamic Accumulation Method, Kurniawan Yuniarto, Bruce A. Welt, Aris Purwanto, Hadi Karia Purwadaria, Ayman Abdellatief, Titi C. Sunarti, Setyo Purwanto

Journal of Applied Packaging Research

Polylactic acid (PLA) is becoming an increasingly important biopolymer for packaging applications. PLA brittleness limits its applicability. This study evaluated PLA properties with increasing amounts of added polyethylene glycol (PEG) plasticizer. Oxygen transmission rate (OTR) of cast films was determined using the newly available Dynamic Accumulation (DA) method. Arrhenius temperature sensitivity of OTR and polymer Permeability was also determined. Permeability of neat PLA is 4.848 ml mm (STP)/m2 s kPa; hence, 4.84 ml mm (STP)/m2 s kPa, 4.07 ml mm (STP)/m2 s kPa and 5.42 ml mm (STP)/m2 ...


Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho 2014 SelectedWorks

Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy ...


Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer 2014 Portland State University

Passive Phase Separation Of Microgravity Bubbly Flows Using Conduit Geometry, Ryan M. Jenson, Andrew Paul Wollman, Mark M. Weislogel, Lauren Sharp, Robert Green, Peter J. Canfield, Jörg Klatte, Michael E. Dreyer

Mechanical and Materials Engineering Faculty Publications and Presentations

The ability to separate liquid and gas phases in the absence of a gravitational acceleration has proven a challenge to engineers since the inception of space exploration. Due to our singular experience with terrestrial systems, artificial body forces are often imparted in multiphase fluid systems aboard spacecraft to reproduce the buoyancy effect. This approach tends to be inefficient, adding complexity, resources, and failure modes. Ever present in multiphase phenomena, the forces of surface tension can be exploited to aid passive phase separations where performance characteristics are determined solely by geometric design and system wettability. Said systems may be readily designed ...


A Regression Approach For Estimation Of Anthropogenic Heat Flux Based On A Bottom-Up Air Pollutant Emission Database, Sang-Hyun Lee, Stuart A. McKeen, David J. Sailor 2014 Portland State University

A Regression Approach For Estimation Of Anthropogenic Heat Flux Based On A Bottom-Up Air Pollutant Emission Database, Sang-Hyun Lee, Stuart A. Mckeen, David J. Sailor

Mechanical and Materials Engineering Faculty Publications and Presentations

A statistical regression method is presented for estimating hourly anthropogenic heat flux (AHF) using an anthropogenic pollutant emission inventory for use in mesoscale meteorological and air-quality modeling. Based on bottom-up AHF estimated from detailed energy consumption data and anthropogenic pollutant emissions of carbon monoxide (CO) and nitrogen oxides (NOx) in the US National Emission Inventory year 2005 (NEI-2005), a robust regression relation between the AHF and the pollutant emissions is obtained for Houston. This relation is a combination of two power functions (Y = aXb) relating CO and NOx emissions to AHF, giving a determinant coefficient (R2 ...


Pump Design And Development For High Shear Grout Mixing Applications, John Kijak, David Kennedy 2014 Dublin Institute of Technology

Pump Design And Development For High Shear Grout Mixing Applications, John Kijak, David Kennedy

Conference Papers

No abstract provided.


A Collagen‐Glycosaminoglycan‐Fibrin Scaffold For Heart Valve Tissue Engineering Applications, Claire Brougham, Stefan Jockenhoevel, Thomas Flanagan, Fergal J. O'Brien 2014 Dublin Institute of Technology

A Collagen‐Glycosaminoglycan‐Fibrin Scaffold For Heart Valve Tissue Engineering Applications, Claire Brougham, Stefan Jockenhoevel, Thomas Flanagan, Fergal J. O'Brien

Conference Papers

The field of heart valve biology and tissue engineering a heart valve continue to expand. The presentatio ns at this meeting reflect the advances made in both areas due to the multi-disciplinary approach taken by many laboratories.


Msu Xtreme: Minnesota State University, Mankato's Entry Into The "Clean Snowmobile Challenge 2001", Scott Betcher, Allen Caldwell, Nathan Lindeman, Brian Mandelkow, Dave Maniak, Randy Rohlf, James Skuya, Dennis Swanson, Aaron Wolff, Mark Brandl, Dan Dobesh, Ryan Erickson, Jeff Gillen, Jan Smith, Jason Wilkie 2014 Minnesota State University, Mankato

Msu Xtreme: Minnesota State University, Mankato's Entry Into The "Clean Snowmobile Challenge 2001", Scott Betcher, Allen Caldwell, Nathan Lindeman, Brian Mandelkow, Dave Maniak, Randy Rohlf, James Skuya, Dennis Swanson, Aaron Wolff, Mark Brandl, Dan Dobesh, Ryan Erickson, Jeff Gillen, Jan Smith, Jason Wilkie

Journal of Undergraduate Research at Minnesota State University, Mankato

Minnesota State University, Mankato’s Automotive Engineering Technology program formed a team to enter the Clean Snowmobile Challenge 2001. Selections for the organization’s machine included a 2001 Polaris Edge Chassis specially outfitted with a 2000 500 cc two-stroke Polaris engine. Modifications to the snowmobile were made specifically for Clean Snowmobile Challenge 2001 events. Acceleration, emissions, cold start, noise, fuel economy/range, handling/drivability, hill climb, and static display made up the list of events featured in the competition. MSU Xtreme has modified the snowmobile in every area with special emphasis on emissions and handling. Testing and analysis of the ...


Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi 2014 Western University

Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi

University of Western Ontario - Electronic Thesis and Dissertation Repository

Plasma Electrolytic Oxidation (PEO) is a surface treatment for the production of ceramic oxide coatings with great properties, such as high wear and corrosion resistance, on metal substrates, particularly aluminum and magnesium alloys. Formation of PEO coatings involves complex processes and mechanisms that are difficult to study. Currently, the PEO process is in a transition phase from research to commercial application, with a primary focus on the corrosion and wear protection of light alloys, and has recently generated interest as a promising surface treatment for biomedical applications.

To justify the industrial application of PEO, a more systematic and in-depth study ...


Effects Of Thermal Boundary Conditions During Finite Element Modeling Of Physical Vapor Transport, Wade Luhman 2014 Minnesota State University, Mankato

Effects Of Thermal Boundary Conditions During Finite Element Modeling Of Physical Vapor Transport, Wade Luhman

Journal of Undergraduate Research at Minnesota State University, Mankato

Physical vapor transport (PVT) is a material processing method commonly used to produce different types of semiconductor materials. Computer modeling of PVT is important to understand the fundamentals of the processing method. Due to the large amount of computer processing power and storage needed to solve the computer models many of the previously solved simulations have been simplified to efficiently utilize computer usage. Previous PVT computer simulations of mercurous chloride (Hg2Cl2) have assumed constant temperature profiles on the source and crystal substrate for simplicity. These simulations were performed using the FIDAP computational fluid dynamics software package. In this research the ...


On The Interfacial Fracture Mechanics Of Long-Fibre Reinforced Polymer Composites, Ian N. Swentek 2014 Western University

On The Interfacial Fracture Mechanics Of Long-Fibre Reinforced Polymer Composites, Ian N. Swentek

University of Western Ontario - Electronic Thesis and Dissertation Repository

Fibre-reinforced polymer composites are being widely adopted as the de facto material for automotive lightweight design, but lack the material models capable of accurately predicting fracture. To address this research gap, three large-scale experimental studies are undertaken to characterize thermoset polymers during cure, understand the fibre-matrix interfacial bond strength, and predict the fracture of random long-fibre composites via the energy of fracture. In conjunction with the Fraunhofer Project Center in London, Ontario, sample sheet moulded composites were used to verify the key findings with several industrial composite samples. With refined interfacial strength measurement methods, and accurate predictions of the composite ...


Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu 2014 Western University

Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu

University of Western Ontario - Electronic Thesis and Dissertation Repository

Obtaining stable aqueous dispersions is one of the main challenges hindering a widespread and effective use of single-walled carbon nanotubes (SWNT) in many applications. Although it has been recognized that their versatility makes them an extremely attractive material, the unique molecular structure that gives SWNTs their unmatched electronic, mechanical, and thermal properties is also responsible for strong van der Waals interactions. This, combined with extremely high aspect ratios and flexibility, causes SWNTs to adhere strongly into tightly bundled ropes. In these bundles, SWNTs are not as useful as their linearized unbundled equivalents. Thus, in order to take advantage of their ...


Three Dimensional Transient Asymmetric Flowfields In Physical Vapor Transport, Joseph Dobmeier 2014 Minnesota State University, Mankato

Three Dimensional Transient Asymmetric Flowfields In Physical Vapor Transport, Joseph Dobmeier

Journal of Undergraduate Research at Minnesota State University, Mankato

Physical Vapor Transport is a manufacturing process used to produce single crystals of semiconductor materials such as mercurous chloride (Hg2Cl2). In the past this time-varying process has been studied with numerical simulation by considering three dimensional flow using an axi-symmetric two dimensional model or by restricting the simulation to asymmetric two dimensional flow and dropping the assumption of axi-symmetry from the model. It is generally agreed that neither of these methods accurately represent the true behavior of the process. The purpose of this research was to extend the asymmetric two dimensional model to three dimensions thereby obtaining a solution which ...


Characterization Of Mechanical Properties Displayed In Body Armor Ballistic Fibers, Dawei Li, Matthew Hudspeth, Weinong Wayne Chen 2014 Purdue University

Characterization Of Mechanical Properties Displayed In Body Armor Ballistic Fibers, Dawei Li, Matthew Hudspeth, Weinong Wayne Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

The current body armor systems manufactured using ballistic fibers are not performing as theoretical results predict and are causing injuries. The actual maximum projectile penetration speed that the body armor can endure is significantly lower than the theoretical maximum speed, thus causing a costly build-test relationship that is not aided with modeling design efforts. The main aim of this research is to determine the maximum penetration speeds for ballistic yarns and fabrics. Secondary aim is to examine the common assumption that during transverse impact, single fiber is under pure tension and shear stress is negligible. To examine aforementioned assumption, fibers ...


Bio-Inspired Helicoidal Composites: 3d Printing And Experiments, Michael E. Jones, Pablo Zavattieri, Nobphadon Suksangpanya 2014 Purdue University

Bio-Inspired Helicoidal Composites: 3d Printing And Experiments, Michael E. Jones, Pablo Zavattieri, Nobphadon Suksangpanya

The Summer Undergraduate Research Fellowship (SURF) Symposium

Materials that are impact resistant enough for personal protection in sports, transport, and combat are not also lightweight, strong, tough, and impact tolerant. Nature can provide inspiration for novel materials that can meet these needs. The hierarchical composite of the stomatopod’s, or mantis shrimp’s, dactyl club has been shown to have high impact resistance and damage tolerance due to its helicoidal fiber reinforcement(1,2). Analyzing helicoidal composites of different pitch angles (angles between adjacent rows of fibers) under quasi-static, displacement-controlled loading has provided insights into the fracture mechanisms of the composite structure and how they affect the ...


He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein 2014 Purdue University

He+ Ion Irradiation On Tungsten Surface In Extreme Conditions, George I. Joseph, Jitendra Tripathi, Sivanandan S. Harilal, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Higher melting point (3695K), lower sputtering yield and most importantly, lower in-bulk, and co-deposit retention at elevated temperature makes tungsten (W) as a potential candidate for plasma-facing component (PFC) in the international thermonuclear experimental reactor (ITER)-divertor. Helium ion (He+) bombardment on W can cause wide variety of microstructural evolution, such as dislocation loops, helium holes/bubbles and fibre-form nanostructures (Fuzz) etc. In this work, 100 eV He+ ion irradiation, at temperature ranges from 500°C to 1000°C, will be performed on mechanically polished mirror like W surfaces. The surface modification and compositional analysis, due to ion irradiation, will ...


Simulation Of Bio-Inspired Porous Battery Electrodes, Raju Gupta, R. Edwin Garcia, Rui Tu 2014 Purdue University

Simulation Of Bio-Inspired Porous Battery Electrodes, Raju Gupta, R. Edwin Garcia, Rui Tu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advancement of technology has led to the increase in use of electronic devices. However, longer life of the rechargeable battery used in electronic devices is one of the biggest issue and demand in the world of electronic devices at present. Battery's performance is affected by the orientation, arrangement, shape and size, and porosity of the materials out of which battery electrodes are made. The goal of this project is to develop a set of numerical libraries that allow developing material micro structures that will allow increasing the performance of rechargeable batteries. We focused on the development of an algorithm ...


Digital Commons powered by bepress