Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,447 Full-Text Articles 7,427 Authors 1,005,106 Downloads 97 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,447 full-text articles. Page 1 of 147.

Designing Cryogenic Strain Device For 2d Materials, Jake Carter 2021 University of Arkansas, Fayetteville

Designing Cryogenic Strain Device For 2d Materials, Jake Carter

Mechanical Engineering Undergraduate Honors Theses

The Churchill lab working within the Physics Department at the University of Arkansas is working to create important quantum states including weak topological insulators (TIs) through the use of symmetry engineering and topological electronic states in two-dimensional (2D) crystals of WHM materials. Experimental results of these topological states have been obstructed due to the difficulty to perform controlled in situ strain. This project strives to create a mount to utilize a piezoelectric nanopositioner within cryostats achieving an in situ strain that creates the quantum states the lab is looking to observe. This report also examines the necessary equations to determine ...


Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin 2021 The University of Texas Rio Grande Valley

Piezo-Tribo Dual Effect Hybrid Nanogenerators For Health Monitoring, Sk Md Ali Zaker Shawon, Andrew Xu Sun, Valeria Suarez Vega, Brishty Deb Chowdhury, Phong Tran, Zaida D. Carballo, Jim Aica Tolentino, Jianzhi Li, Muhammad Sufian Rafaqut, Serena Danti, Mohammed Jasim Uddin

Electrical and Computer Engineering Faculty Publications and Presentations

Over the years, nanogenerators for health monitoring have become more and more attractive as they provide a cost-effective and continuous way to successfully measure vital signs, physiological status, and environmental changes in/around a person. Using such sensors can positively affect the way healthcare workers diagnose and prevent life-threatening conditions. Recently, the dual piezo-tribological effect of hybrid nanogenerators (HBNGs) have become a subject of investigation, as they can provide a substantial amount of data, which is significant for healthcare. However, real-life exploitation of these HBNGs in health monitoring is still marginal. This review covers piezo-tribo dual-effect HBNGs that are used ...


Nanopore Guided Regional Assembly, Eleni Adam, Desh Ranjan, Harold Riethman 2021 Old Dominion University

Nanopore Guided Regional Assembly, Eleni Adam, Desh Ranjan, Harold Riethman

College of Sciences Posters

The telomeres are the “caps” of the chromosomes and their vital role is to protect them. Possible telomere dysfunction caused by telomere rearrangements can be fatal for the cell and result in age-related diseases, including cancer. The telomeres and subtelomeres are regions that are hard to investigate. The current technology cannot provide their complete sequence, instead the DNA is given in multiple pieces. Current methods of assembling the pieces of these regions are not accurate enough due to the region’s high variability and complex repeated patterns. We propose a hybrid assembly method, the NPGREAT, which utilizes two of the ...


Protein-Assisted Scalable Mechanochemical Exfoliation Of Few-Layer Biocompatible Graphene Nanosheets, Deepak-George Thomas, Steven De-Alwis, Shalabh Gupta, Vitalij K. Pecharsky, Deyny Mendivelso-Perez, Reza Montazami, Emily A. Smith, Nicole N. Hashemi 2021 Iowa State University

Protein-Assisted Scalable Mechanochemical Exfoliation Of Few-Layer Biocompatible Graphene Nanosheets, Deepak-George Thomas, Steven De-Alwis, Shalabh Gupta, Vitalij K. Pecharsky, Deyny Mendivelso-Perez, Reza Montazami, Emily A. Smith, Nicole N. Hashemi

Mechanical Engineering Publications

A facile method to produce few-layer graphene (FLG) nanosheets is developed using protein-assisted mechanical exfoliation. The predominant shear forces that are generated in a planetary ball mill facilitate the exfoliation of graphene layers from graphite flakes. The process employs a commonly known protein, bovine serum albumin (BSA), which not only acts as an effective exfoliation agent but also provides stability by preventing restacking of the graphene layers. The latter is demonstrated by the excellent long-term dispersibility of exfoliated graphene in an aqueous BSA solution, which exemplifies a common biological medium. The development of such potentially scalable and toxin-free methods is ...


Nanocellulose Sheets From Oil Palm Empty Fruit Bunches Treated With Naoh Solution, Farah Fahma, Faiza Ayu Lestari, Ika Amalia Kartika, Nurmalisa Lisdayana, Evi Savitri Iriani 2021 IPB University (Bogor Agricultural University)

Nanocellulose Sheets From Oil Palm Empty Fruit Bunches Treated With Naoh Solution, Farah Fahma, Faiza Ayu Lestari, Ika Amalia Kartika, Nurmalisa Lisdayana, Evi Savitri Iriani

Karbala International Journal of Modern Science

The objective of this study is to produce nanocellulose sheets from oil palm empty fruit bunches (OPEFBs). Nanocellulose sheets from OPEFBs were prepared through the dewatering process using vacuum filtration. Subsequently, the produced sheets were treated with NaOH solution to improve the mechanical stability of their structure, causing them to be firm in water. The water absorption of nanocellulose sheet increased with increasing NaOH concentrations up to 20 wt%, increasing tensile strength, and Young’s modulus, but decreased when they were treated with 30 wt%. The diameter shrinkage of nanocellulose sheets was directly proportional to the NaOH concentration and soaking ...


Mechanical Characteristics Of Cement Paste In The Presence Of Carbon Nanotubes And Silica Oxide Nanoparticles: An Experimental Study, Moses Karakouzian, Visar Farhangi, Marzieh R. Farani, Alireza Joshaghani, Mehdi Zadehmohamad, Mohammad Ahmadzadeh 2021 University of Nevada, Las Vegas

Mechanical Characteristics Of Cement Paste In The Presence Of Carbon Nanotubes And Silica Oxide Nanoparticles: An Experimental Study, Moses Karakouzian, Visar Farhangi, Marzieh R. Farani, Alireza Joshaghani, Mehdi Zadehmohamad, Mohammad Ahmadzadeh

Civil & Environmental Engineering and Construction Faculty Publications

Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared using three different portions of MWCNT and NS ...


The Surface Chemistry And Structure Of Colloidal Lead Halide Perovskite Nanocrystals, Sara R. Smock, Yunhua Chen, Aaron J. Rossini, Richard L. Brutchey 2021 University of Southern California

The Surface Chemistry And Structure Of Colloidal Lead Halide Perovskite Nanocrystals, Sara R. Smock, Yunhua Chen, Aaron J. Rossini, Richard L. Brutchey

Chemistry Publications

Since the initial discovery of colloidal lead halide perovskite nanocrystals, there has been significant interest placed on these semiconductors because of their remarkable optoelectronic properties, including very high photoluminescence quantum yields, narrow size- and composition-tunable emission over a wide color gamut, defect tolerance, and suppressed blinking. These material attributes have made them attractive components for next-generation solar cells, light emitting diodes, low-threshold lasers, single photon emitters, and X-ray scintillators. While a great deal of research has gone into the various applications of colloidal lead halide perovskite nanocrystals, comparatively little work has focused on the fundamental surface chemistry of these materials ...


Elucidating The Location Of Cd2+ In Post-Synthetically Treated Inp Quantum Dots Using Dynamic Nuclear Polarization 31p And 113cd Solid-State Nmr Spectroscopy, Michael P. Hanrahan, Jennifer L. Stein, Nayon Park, Brandi M. Cossairt, Aaron J. Rossini 2021 Iowa State University and Ames Laboratory

Elucidating The Location Of Cd2+ In Post-Synthetically Treated Inp Quantum Dots Using Dynamic Nuclear Polarization 31p And 113cd Solid-State Nmr Spectroscopy, Michael P. Hanrahan, Jennifer L. Stein, Nayon Park, Brandi M. Cossairt, Aaron J. Rossini

Chemistry Publications

Indium phosphide quantum dots (InP QD) are a promising alternative to traditional QD materials that contain toxic heavy elements such as lead and cadmium. However, InP QD obtained from colloidal synthesis are often plagued by poor photoluminescence quantum yields (PL-QYs). In order to improve the PL-QY of InP QD, a number of post-synthetic treatments have been devised. Recently, it has been shown that InP post-synthetically treated with Lewis acid metal divalent cations (M-InP) exhibit enhanced PL-QY; however, the molecular structure and mechanism behind the improved PL-QY are not fully understood. To determine the surface structure of M-InP QD, dynamic nuclear ...


An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings 2021 University of Kentucky

An Ultrabroadband 3d Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Aytekin Ozdemir, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

We design and fabricate ultra-broadband achromatic metalenses operating from the visible into the short-wave infrared, 450–1700 nm, with diffraction-limited performance. A hybrid 3D architecture, which combines nanoholes with a phase plate, allows realization in low refractive index materials. As a result, two-photon lithography can be used for prototyping while molding can be used for mass production. Experimentally, a 0.27 numerical aperture (NA) metalens exhibits 60% average focusing efficiency and 6% maximum focal length error over the entire bandwidth. In addition, a 200 μm diameter, 0.04 NA metalens was used to demonstrate achromatic imaging over the same broad ...


Competitive Formation Of Intercalated Versus Supported Metal Nanoclusters During Deposition On Layered Materials With Surface Point Defects, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans 2021 Ames Laboratory

Competitive Formation Of Intercalated Versus Supported Metal Nanoclusters During Deposition On Layered Materials With Surface Point Defects, Yong Han, Ann Lii-Rosales, Michael C. Tringides, James W. Evans

Ames Laboratory Accepted Manuscripts

Intercalated metal nanoclusters (NCs) can be formed under the surface of graphite after sputtering to generate surface “portal” defects that allow deposited atoms to reach the subsurface gallery. However, there is a competition between formation of supported NCs on top of the surface and intercalated NCs under the surface, the latter only dominating at sufficiently high temperature. A stochastic model incorporating appropriate system thermodynamics and kinetics is developed to capture this complex and competitive nucleation and growth process. Kinetic Monte Carlo simulation shows that the model captures experimental trends observed for Cu and other metals and reveals that higher temperatures ...


Nondestructive Evaluation Of Aluminium Foam Panels Subjected To Impact Loading, Gabriella Epasto, Fabio Distefano, Hozhabar Mozafari, Emanoil Linul, Vincenzo Crupi 2021 University of Messina

Nondestructive Evaluation Of Aluminium Foam Panels Subjected To Impact Loading, Gabriella Epasto, Fabio Distefano, Hozhabar Mozafari, Emanoil Linul, Vincenzo Crupi

Mechanical & Materials Engineering Faculty Publications

Aluminium foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. Some of the authors of this paper proposed an innovative Metallic Foam Shell protective device against flying ballast impact damage in railway axles. A closed-cell aluminium foam was chosen for the Metallic Foam Shell device. The main goal of this study was the experimental investigation of the impact responses of aluminium foam panels. Low velocity impact tests were carried out at different energies on different types of aluminium foam panels in order to investigate the effects of some parameters, such as core thickness ...


Metallic Surface Doping Of Metal Halide Perovskites, Yuze Lin, Yuchuan Shao, Jun Dai, Tao Li, Yi Liu, Xuezeng Dai, Xun Xiao, Yehao Deng, Alexei Gruverman, Xiao Cheng Zeng, Jinsong Huang 2021 University of North Carolina

Metallic Surface Doping Of Metal Halide Perovskites, Yuze Lin, Yuchuan Shao, Jun Dai, Tao Li, Yi Liu, Xuezeng Dai, Xun Xiao, Yehao Deng, Alexei Gruverman, Xiao Cheng Zeng, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Intentional doping is the core of semiconductor technologies to tune electrical and optical properties of semiconductors for electronic devices, however, it has shown to be a grand challenge for halide perovskites. Here, we show that some metal ions, such as silver, strontium, cerium ions, which exist in the precursors of halide perovskites as impurities, can n-dope the surface of perovskites from being intrinsic to metallic. The low solubility of these ions in halide perovskite crystals excludes the metal impurities to perovskite surfaces, leaving the interior of perovskite crystals intrinsic. Computation shows these metal ions introduce many electronic states close to ...


Surface Strengthening Of Single-Crystal Alumina By High-Temperature Laser Shock Peening, Fei Wang, X. L. Yan, Lei Liu, Michael Nastasi, Yongfeng Lu, Bai Cui 2021 University of Nebraska-Lincoln

Surface Strengthening Of Single-Crystal Alumina By High-Temperature Laser Shock Peening, Fei Wang, X. L. Yan, Lei Liu, Michael Nastasi, Yongfeng Lu, Bai Cui

Mechanical & Materials Engineering Faculty Publications

This manuscript reports a novel process of high-temperature laser shock peening (HTLSP) for surface strengthening of single-crystal ceramics such as sapphire and reveals its fundamental mechanisms. HTLSP at 1200°C can induce a high compressive residual stress on the surface of sapphire while minimize the damage of laser-driven shock waves. Transmission electron microscopy characteriza- tions revealed high dislocation densities near the surface, suggesting that plastic deformation at an ultrahigh strain rate was generated by the high shock wave pressure. The HTLSP-induced compres- sive residual stress can significantly improve the hardness and fracture toughness of sapphire, while maintain its outstanding optical ...


Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao 2021 University of Nebraska-Lincoln

Process-Structure Relationship In The Directed Energy Deposition Of Cobalt-Chromium Alloy (Stellite 21) Coatings, Ziyad M. Smoqi, Joshua Toddy, Harold (Scott) Halliday, Jeffrey E. Shield, Prahalada K. Rao

Mechanical & Materials Engineering Faculty Publications

In this work, we accomplished the crack-free directed energy deposition (DED) of a multi-layer Cobalt- Chromium alloy coating (Stellite 21) on Inconel 718 substrate. Stellite alloys are used as coating materials given their resistance to wear, corrosion, and high temperature. The main challenge in DED of Stellite coatings is the proclivity for crack formation during printing. The objective of this work is to characterize the effect of the input energy density and localized laser-based preheating on the characteristics of the deposited coating, namely, crack formation, microstructural evolution, dilution of the coating composition due to diffusion of iron and nickel from ...


The Role Of Microenvironmental Cues And Mechanical Loading Milieus In Breast Cancer Cell Progression And Metastasis, Brandon D. Riehl, Eunju Kim, Tasneem Bouzid, Jung Yul Lim 2021 University of Nebraska-Lincoln

The Role Of Microenvironmental Cues And Mechanical Loading Milieus In Breast Cancer Cell Progression And Metastasis, Brandon D. Riehl, Eunju Kim, Tasneem Bouzid, Jung Yul Lim

Mechanical & Materials Engineering Faculty Publications

Cancer can disrupt the microenvironments and mechanical homeostatic actions in multiple scales from large tissue modification to altered cellular signaling pathway in mechanotransduction. In this review, we highlight recent progresses in breast cancer cell mechanobiology focusing on cell-microenvironment interaction and mechanical loading regulation of cells. First, the effects of microenvironmental cues on breast cancer cell progression and metastasis will be reviewed with respect to substrate stiffness, chemical/topographic substrate patterning, and 2D vs. 3D cultures. Then, the role of mechanical loading situations such as tensile stretch, compression, and flow-induced shear will be discussed in relation to breast cancer cell mechanobiology ...


Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla 2021 University of Nebraska-Lincoln

Surface Acoustic Waves Increase Magnetic Domain Wall Velocity, Anil Adhikari, Shireen Adenwalla

Shireen Adenwalla Papers

Domain walls in magnetic thin films are being explored for memory applications and the speed at which they move has acquired increasing importance. Magnetic fields and currents have been shown to drive domain walls with speeds exceeding 500 m/s. We investigate another approach to increase domain wall velocities, using high frequency surface acoustic waves to create standing strain waves in a 3 micron wide strip of magnetic film with perpendicular anisotropy. Our measurements, at a resonant frequency of 248.8 MHz, indicate that domain wall velocities increase substantially, even at relatively low applied voltages. Our findings suggest that the ...


Revealing The Surface Structure Of Cdse Nanocrystals By Dynamic Nuclear Polarization-Enhanced 77se And 113cd Solid-State Nmr Spectroscopy, Yunhua Chen, Rick W. Dorn, Michael P. Hanrahan, Lin Wei, Rafael Blome-Fernández, Alan M. Medina-Gonzalez, Marquix A. S. Adamson, Anne H. Flintgruber, Javier Vela, Aaron J. Rossini 2021 Iowa State University and Ames Laboratory

Revealing The Surface Structure Of Cdse Nanocrystals By Dynamic Nuclear Polarization-Enhanced 77se And 113cd Solid-State Nmr Spectroscopy, Yunhua Chen, Rick W. Dorn, Michael P. Hanrahan, Lin Wei, Rafael Blome-Fernández, Alan M. Medina-Gonzalez, Marquix A. S. Adamson, Anne H. Flintgruber, Javier Vela, Aaron J. Rossini

Chemistry Publications

Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies and which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain ...


All-Graphene-Based Open Fluidics For Pumpless, Small-Scale Fluid Transport Via Laser-Controlled Wettability Patterning, Lucas S. Hall, Dohgyu Hwang, Bolin Chen, Bryan Van Belle, Zachary T. Johnson, John A. Hondred, Carmen L. Gomes, Michael D. Bartlett, Jonathan C. Claussen 2021 Iowa State University

All-Graphene-Based Open Fluidics For Pumpless, Small-Scale Fluid Transport Via Laser-Controlled Wettability Patterning, Lucas S. Hall, Dohgyu Hwang, Bolin Chen, Bryan Van Belle, Zachary T. Johnson, John A. Hondred, Carmen L. Gomes, Michael D. Bartlett, Jonathan C. Claussen

Mechanical Engineering Publications

Open microfluidics have emerged as a low-cost, pumpless alternative strategy to conventional microfluidics for delivery of fluid for a wide variety of applications including rapid biochemical analysis and medical diagnosis. However, creating open microfluidics by tuning the wettability of surfaces typically requires sophisticated cleanroom processes that are unamenable to scalable manufacturing. Herein, we present a simple approach to develop open microfluidic platforms by manipulating the surface wettability of spin-coated graphene ink films on flexible polyethylene terephthalate via laser-controlled patterning. Wedge-shaped hydrophilic tracks surrounded by superhydrophobic walls are created within the graphene films by scribing micron-sized grooves into the graphene with ...


Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali 2021 Old Dominion University

Generation Of Excited Species In A Streamer Discharge, Shirshak K. Dhali

Electrical & Computer Engineering Faculty Publications

At or near atmospheric pressure, most transient discharges, particularly in molecular gases or gas mixture containing molecular gases, result in a space charge dominated transport called a streamer discharge. The excited species generation in such discharges forms the basis for plasma chemistry in most technological applications. In this paper, we simulate the propagation of streamers in atmospheric pressure N2 to understand the energy partitioning in the formation of various excited species and compare the results to a uniform Townsend discharge. The model is fully two-dimensional with azimuthal symmetry. The results show a significantly larger fraction of the energy goes ...


Sense–Analyze–Respond–Actuate (Sara) Paradigm: Proof Of Concept System Spanning Nanoscale And Macroscale Actuation For Detection Of Escherichia Coli In Aqueous Media, Cassie A. Giacobassi, Daniela A. Oliveira, Cicero C. Pola, Dong Xiang, Yifan Tang, Shoumen Palit Austin Datta, Eric S. McLamore, Carmen L. Gomes 2021 Texas A & M University - College Station

Sense–Analyze–Respond–Actuate (Sara) Paradigm: Proof Of Concept System Spanning Nanoscale And Macroscale Actuation For Detection Of Escherichia Coli In Aqueous Media, Cassie A. Giacobassi, Daniela A. Oliveira, Cicero C. Pola, Dong Xiang, Yifan Tang, Shoumen Palit Austin Datta, Eric S. Mclamore, Carmen L. Gomes

Mechanical Engineering Publications

Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation ...


Digital Commons powered by bepress