Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,366 Full-Text Articles 7,019 Authors 1,421,734 Downloads 106 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,366 full-text articles. Page 1 of 143.

A Review On Nanomaterials And Nanohybrids Based Bio-Nanocomposites For Food Packaging, Kalpani Y. Perera, Amit K. Jaiswal, Swarna Jaiswal 2022 Technological University Dublin

A Review On Nanomaterials And Nanohybrids Based Bio-Nanocomposites For Food Packaging, Kalpani Y. Perera, Amit K. Jaiswal, Swarna Jaiswal

Articles

With an increasing demand for a novel, eco-friendly, high-performance packaging material “bio-nanocomposites” has attracted great attention in recent years. The review article aims at to evaluating recent innovation in bio-nanocomposites for food packaging applications. The current trends and research over the last three years of the various bio-nanocomposites including inorganic, organic nanomaterials, and nanohybrids, which are suitable as food packaging materials due to their advanced properties such as high mechanical, thermal, barrier, antimicrobial, and antioxidant are described in detail. In addition, the legislation, migration studies, and SWOT analysis on bio-nanocomposite film have been discussed. It has been observed that the ...


A Brief Review Of The Impact Of Silver Nanoparticles On Agriculture And Certain Biological Properties: A Case Study, Sushmashree Krishnappa, Shankramma Kalikeri, Raj Kumar H. Garampalli, Lingaraju H G, Charan Kumar Kachintaya 2022 Division Nanoscience and Technology, School of Natural Sciences, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru – 570 015, Karnataka, India.

A Brief Review Of The Impact Of Silver Nanoparticles On Agriculture And Certain Biological Properties: A Case Study, Sushmashree Krishnappa, Shankramma Kalikeri, Raj Kumar H. Garampalli, Lingaraju H G, Charan Kumar Kachintaya

International Journal of Health and Allied Sciences

Nanotechnology is progressively becoming a popular field of research because it has been successful in changing our agricultural and food systems. According to research published by the UNFAO, agriculture as well as its derivatives would be in high demand sooner or later, owing to nutritional changes. Nanoparticles have been reported to be used in an agricultural sector, because of its capacity to encourage crop growth and yield. Among metal nanoparticles, Silver Nanoparticles (AgNPs) are attracting a lot of attention. We have highlighted some of the agricultural uses of AgNPs, which include pest management, plant disease detection, crop enhancement, and crop ...


Electrical Characterization Of Solar Cell Using Arduino And Polarization Film, Mark Lancaster, Ahana Jhamb, Xilai Song, Marissa Youderian, Gabriel Unger, Gyuseok L. Kim 2022 University of Pennsylvania

Electrical Characterization Of Solar Cell Using Arduino And Polarization Film, Mark Lancaster, Ahana Jhamb, Xilai Song, Marissa Youderian, Gabriel Unger, Gyuseok L. Kim

Educational Materials

A solar cell laboratory course for high school and college undergraduate students is proposed. The electrical characterization of the solar cell is performed to confirm the functionality of the device as both a diode and a power source. The efficiency of the solar cell in the illuminated condition is found to be 13.1 %. We find the efficiency of the solar cell slightly decreases as the intensity of light decreases. However, there is no significant difference in efficiency except for in the opaque condition. A calibrated solar cell, multimeter, current sensor, Arduino, coding and polarization are used to perform the ...


Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan 2022 University of Maine

Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan

Electronic Theses and Dissertations

Self-standing cellulose nanofibril (CNF) films are regarded as one of the promising alternatives to current petroleum-based packaging materials. The mechanical and barrier properties of CNF films are not yet up to the mark for certain applications, especially at high relative humidity. Those properties of CNF films can be tuned by the drying methods of films, degree of fibrillation, cross-linking, and controlled shrinkage. A comprehensive understanding of these processes and their influence on the structure and properties of CNF films have been presented in this thesis.

First, we prepared CNF films from CNF suspensions with two different degrees of fibrillation- standard ...


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik 2022 Clemson University

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core ...


Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji 2022 University of Nebraska-Lincoln

Understanding The Role Of Antioxidant Nanoparticles In Improving The Outcome Of Secondary Injury In Traumatic Brain Injury, Aria W. Tarudji

Biological Systems Engineering--Dissertations, Theses, and Student Research

Following traumatic brain injury (TBI), excess reactive oxygen species (ROS) and other free radicals are released, inducing the cascade of secondary injury that exacerbate the outcomes of TBI. Antioxidant nanoparticles (ANPs) have shown promising outcomes in reducing the progression of TBI, which may be due to the higher accumulation and retention of ANPs in the injured brain. However, there is limited knowledge of: 1) antioxidant activities needed in TBI treatment, 2) correlation between longer retention, bioavailability, and target engagement with antioxidant treatments, and 3) sexual dimorphism to ANP treatments.

This dissertation assesses multiple ANPs with various scavenging activities and durations ...


The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek 2022 Purdue University

The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek

International Conference on Durability of Concrete Structures

Incorporation of fly ash in cementitious systems containing ordinary portland cement (OPC) increases their long-term strength and durability. However, replacement of cement by fly ash also reduces the heat of hydration of such systems and reduces early-age strength development. The reduced rate of strength development can increase the risk of durability problems, e.g. scaling, in cases when young concrete is exposed to low temperatures and deicing chemicals. This study investigated the potential of nano-titanium dioxide (nano-TiO2) particles to modify the hydration kinetics of fly ash pastes and compressive strength development of corresponding mortars cured under low (4°C ...


Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Super-Nanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen 2022 The University of Texas Rio Grande Valley

Reducing Leakage Current And Enhancing Polarization In Multiferroic 3d Super-Nanocomposites By Microstructure Engineering, Erik Enriquez, Ping Lu, Leigang Li, Bruce Zhang, Haiyan Wang, Quanxi Jia, Aiping Chen

Physics and Astronomy Faculty Publications and Presentations

Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D‐sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D‐sNC with CoFe2O4 (CFO) short nanopillar arrays embedded in BaTiO3 (BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure ...


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi 2022 Louisiana State University

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study ...


Two-Photon Nanomachining Of A Micromechanically Enhanced Optical Cavity Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim, Joseph S. Suelzer, Nicholas G. Usechak 2022 Air Force Institute of Technology

Two-Photon Nanomachining Of A Micromechanically Enhanced Optical Cavity Sensor On An Optical Fiber Tip, Jeremiah C. Williams, Hengky Chandrahalim, Joseph S. Suelzer, Nicholas G. Usechak

Faculty Publications

Herein, a two-photon nanostructuring process that is employed to monolithically integrate dynamic three-dimensional (3D) micromechanical features into Fabry–Pérot cavity (FPC) sensors on an optical fiber tip is demonstrated. These features represent a breakthrough in the integration and fabrication capabilities of micro optomechanical devices and systems. The demonstrated dynamic optical surface enables directional thin-film deposition onto obscured areas. The rotation of the dynamically movable mirror to deposit a thin reflective coating onto the inner surfaces of a FPC with curved geometry is leveraged. The reflective coating in conjunction with the dynamically rotatable mirror greatly improves the quality factor of the ...


Passive Radiative Cooling By Spectrally Selective Nanoparticles In Thick Film Nanocomposites, David Allen Young 2022 University of South Florida

Passive Radiative Cooling By Spectrally Selective Nanoparticles In Thick Film Nanocomposites, David Allen Young

USF Tampa Graduate Theses and Dissertations

Passive cooling of buildings is a benefit to society since no energy input is required for space cooling which reduces electricity consumption, fossil fuel burning, and greenhouse gas emissions. When a passive cooling technology radiates heat from the earth through the atmospheric windows to space higher levels of cooling power are possible -- this phenomenon is classified as passive “radiative” cooling. Spectrally selective surface coatings provide radiative cooling to lower surface temperatures by reflecting most solar radiation, while emitting infrared radiation at wavelengths between 8-13 μm through the primary atmospheric window to the cold of space. Multiple applications of radiative cooling ...


Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley 2022 Rowan University

Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley

Theses and Dissertations

The inherent chemical, mechanical, and structural properties of nucleic acids make them ideal candidates for the formulation of tunable, personalized drug nanocarriers. However, none so far have exploited these properties for the controlled release of therapeutic drugs. In this dissertation, a biomimetic approach to controlling drug release is exhibited by specifically manipulating the architecture of novel, DNA nanoparticles to take advantage of drug binding mechanisms of action. Rationally designed DNA strands were immobilized on gold surfaces via a terminal thiol modification. Immobilized monomers can be manipulated to form distinct monolayer architectures including flat, folded, coiled, or stretched structures. Increasing the ...


Carbon Nanotube-Based Microscale Capacitive Flow Sensors, Nathaniel Holmes 2022 The University of Western Ontario

Carbon Nanotube-Based Microscale Capacitive Flow Sensors, Nathaniel Holmes

Electronic Thesis and Dissertation Repository

Micro-scale flow sensors present several advantages over traditional flow sensing
methods, including minimal flow disruption, high spatial resolution, and low unit
cost. Many existing micro-scale thermal and piezo flow sensors struggle with temperature drift and require complicated fabrication processes. This thesis details
the development of a 60 μm by 60 μm by 50 μm drag-based capacitive flow sensor
constructed from vertically aligned carbon nanotube forests. The construction
of a thermal chemical vapour deposition system for sensor synthesis is also de-
tailed. Manual manipulation of the sensor with an atomic force microscope probe
was found to produce a full scale signal ...


Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz 2022 California Polytechnic State University, San Luis Obispo

Uv Space Imager Enclosure Coating, David Silva Cortez, Victor Alexander Rempel Dekhtyar, Maria L. Muñoz

Mechanical Engineering

The goal of this project is to reduce the amount of stray light entering an ultraviolet (UV) imager through absorption. This report outlines the use of ZnO nanoparticles mixed in an epoxy matrix for use in a CubeSat enclosure. Through testing, our team verified that the ZnO and epoxy coating experienced a peak absorption between 360-370 nm. The epoxy mixture with the .75% by weight ZnO nanoparticles absorbed up to 99.9 % of UV light at its peak. The effect on material properties, such as Young’s modulus and ultimate tensile strength, was also tested. Tensile tests demonstrated that adding ...


Application Of Bismuth Oxychloride As A Colorimetric Uv Sensor Material, Kyle James Troche 2022 University of New Mexico

Application Of Bismuth Oxychloride As A Colorimetric Uv Sensor Material, Kyle James Troche

Nanoscience and Microsystems ETDs

Sunlight contains about 9% UV radiation with roughly one-third of it penetrating the atmosphere and reaching the Earth’s surface. UV radiation from the sun is classified into three different types: UVA (315- 499 nm), UVB (280- 314nm), and UVC (100- 279 nm). Prolonged exposure to artificial UV radiation or direct sunlight can still induce many adverse effects such as sunburn, weakening of the immune system, and skin cancer. A wide variety of photoresistor, photodiode and colorimetric UV sensors are currently being researched to help monitor UV radiation. Our research is focused on developing a colorimetric UV sensor that is ...


Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia 2022 Southern Methodist University

Resistive Pulse Sensing Of Protein Unfolding And Transport In Solid-State Nanopores, Jugal Saharia

Mechanical Engineering Research Theses and Dissertations

Solid-state nanopore sensors have attracted considerable attraction as a tool for solution-based single-molecule studies and have been successfully utilized for characterization of biomolecules such as nucleic acids, proteins, glycans, viruses, etc. Among these, characterization of proteins has been more challenging due to their charge heterogeneity and the complex energy landscape associated with different protein conformations. Presented in this thesis is the fabrication of solid-state nanopores and their application for characterizing proteins and understanding their transport through nanopores. Fabrication of nanometer-sized pores in SixNy membranes was achieved using the conventional controlled dielectric breakdown method as well as a ...


Surface Acoustic Wave Characterization And Interdigitated Transducer Optimization For Studying Stress-Enhanced Phenomena, Brian D. Rummel 2022 University of New Mexico

Surface Acoustic Wave Characterization And Interdigitated Transducer Optimization For Studying Stress-Enhanced Phenomena, Brian D. Rummel

Nanoscience and Microsystems ETDs

Surface acoustic wave devices have not yet achieved their full potential as the effects of standing acoustic fields on stress-sensitive phenomena in semiconductor systems have been largely unexplored. From this perspective, it is necessary to develop novel methods to characterize surface acoustic wave devices quantitatively and prepare an experimental platform to probe stress-enhanced processes. In this dissertation, interdigitated transducer devices are fabricated on gallium arsenide to evaluate their potential impact on strain-enhanced phenomena. A novel Raman characterization technique characterizes the surface stress induced by a standing acoustic field, revealing stress values on the order of 108 Pa. FEM software ...


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik 2022 Mississippi State University

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the ...


Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2], Jeremiah C. Williams, Hengky Chandrahalim 2022 Air Force Institute of Technology

Monolithically Integrated Microscale Pressure Sensor On An Optical Fiber Tip [U.S. Patent Us11326970b2], Jeremiah C. Williams, Hengky Chandrahalim

Faculty Publications

A passive microscopic Fabry-Pérot Interferometer (FPI) pressure sensor includes an optical fiber and a three-dimensional microscopic optical enclosure. The three-dimensional microscopic optical enclosure includes tubular side walls having lateral pleated corrugations and attached to a cleaved tip of the optical fiber to receive a light signal. An optically reflecting end wall is distally engaged to the tubular side walls to enclose a trapped quantity of gas that longitudinally positions the optically reflecting end wall in relation to ambient air pressure, changing a distance traveled by a light signal reflected back through the optical fiber.


Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2], Jeremiah C. Williams, Hengky Chandrahalim 2022 Air Force Institute of Technology

Hinged Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors [Us Patent Us11320596b2], Jeremiah C. Williams, Hengky Chandrahalim

Faculty Publications

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of the optical fighter using a two-photon polymerization process on a photosensitive polymer by a three-dimensional micromachining device. The three-dimensional microscopic optical structure having a hinged optical layer pivotally connected to a distal portion of a suspended structure. A reflective layer is deposited on a mirror surface of the hinged optical layer while in an open position. The hinged optical layer is subsequently positioned in the closed position to align the mirror surface to at least partially reflect a light signal back ...


Digital Commons powered by bepress