Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,950 Full-Text Articles 3,478 Authors 489,575 Downloads 46 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

1,950 full-text articles. Page 1 of 70.

Three-Dimensional Scaffolds Of Graphene, Carbon Nanotubes And Transition-Metal Oxides For Applications In Electronics, Sensors And Energy Storage, Gilbert N. Mbah 2015 University of Nebraska-Lincoln

Three-Dimensional Scaffolds Of Graphene, Carbon Nanotubes And Transition-Metal Oxides For Applications In Electronics, Sensors And Energy Storage, Gilbert N. Mbah

Student Research Projects, Dissertations, and Theses - Chemistry Department

Electronics, sensors and energy storage devices are the new waves behind economic development, security and communication1. Engineering small sizes of electronic, sensors and energy storage devices is the hurdle limiting efficient, portable and vast applications of Nano-devices for economic, security and communication advancement2. Silicon the major material used in transistors has approached its limit to fabricated Nano-devices3. The discovery of free standing, one atomic layer thick and two-dimensional graphene sheets with high conductivity, inert, high specific surface area, stable and high tensile strength material in 2004 has shown capabilities to replaced silicon in electronics, sensors and energy ...


Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang 2015 The University of Western Ontario

Studies Of Periodic And Quasiperiodic Gold Nanohole Arrays And Their Applications, Zhaoliang Yang

University of Western Ontario - Electronic Thesis and Dissertation Repository

Wavelength to refractive index sensitivity and resonance wavelength position are two very important performance characteristics for nanohole array based surface plasmon resonance sensors while these characteristics are mostly researched on periodic nanohole arrays, instead of quasiperiodic nanohole arrays. This thesis deduces theoretical equations about the wavelength to refractive index sensitivity and resonance wavelength position of quasiperiodic nanohole arrays. Theoretical analysis shows that wavelength to refractive index sensitivity is not associated with geometry pattern, hole size or pitch but with the wavelength. A novel surface plasmon resonance platform is built by transferring gold films patterned with quasiperiodic nanohole arrays to the ...


Measuring The Effectiveness Of Photoresponsive Nanocomposite Coatings On Aircraft Windshields To Mitigate Laser Intensity, Ryan S. Phillips, Hubert K. Bilan, Zachary X. Widel, Randal J. DeMik, Samantha J. Brain, Matthew Moy, Charles Crowder, Stanley L. Harriman, James T. O'Malley III, Joseph E. Burlas, Steven F. Emmert, Jason J. Keleher 2015 Lewis University

Measuring The Effectiveness Of Photoresponsive Nanocomposite Coatings On Aircraft Windshields To Mitigate Laser Intensity, Ryan S. Phillips, Hubert K. Bilan, Zachary X. Widel, Randal J. Demik, Samantha J. Brain, Matthew Moy, Charles Crowder, Stanley L. Harriman, James T. O'Malley Iii, Joseph E. Burlas, Steven F. Emmert, Jason J. Keleher

Journal of Aviation Technology and Engineering

In 2004, pilots reported 46 laser illumination events to the Federal Aviation Administration (FAA), with the number increasing to approximately 3,600 in 2011. Since that time, the number of reported laser incidents has ranged from 3,500 to 4,000. Previous studies indicate the potential for flight crewmember distraction from bright laser light being introduced to the cockpit. Compositional variations of the photoresponsive nanocomposite coatings were applied to an aircraft windscreen using a modified liquid dispersion/heating curing process. The attenuating effects of the deposited films on laser light intensity were evaluated using an optical power meter and the ...


Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang 2015 University of Nebraska–Lincoln

Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang

Electrical Engineering Theses and Dissertations

Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.

The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer ...


Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, UPM Ashik, WMA Wan Daud 2015 Univerity of Malaya

Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud

upm ashik

Co-precipitation cum modified Stöber method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size [similar]30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the ...


Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev 2015 Clemson University

Probing And Controlling Fluid Rheology At Microscale With Magnetic Nanorods, Alexander Tokarev

All Dissertations

This Dissertation is focused on the development of new methods for characterization and control of fluid rheology using magnetic nanorods. This Dissertation consists of five chapters. In the first chapter, we review current microrheologial methods and develop a Magnetic Rotational Spectroscopy (MRS) model describing nanorod response to a rotating magnetic field. Using numerical modeling, we analyze the effects of materials parameters of nanorods and fluids on the MRS characteristic features. The model is designed for a specific experimental protocol. We introduce and examine physical parameters which can be measured experimentally. The model allows identification of MRS features enabling the calculation ...


Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva 2015 Purdue University

Nanoparticle Plasmonics: Going Practical With Transition Metal Nitrides, U. Guler, V. M. Shalaev, A. Boltasseva

U. Guler

Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a ...


Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers 2015 Georgia Southern University

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers

Georgia Southern University Research Symposium

Encapsulation of a model anti-cancer drug, 5-Fluorouracul (5-FU) into biocompatible core-shell nanofibers of polycaprolactone (PCL) nanofibers was fabricated using a coaxial electrospinning process. Our work aims to solve these issues using a novel method of fabrication of fibers featuring confinement of drugs within a biodegradable core-shell structure, thereby permitting sustained release of drugs to specific sites of treatment, such as tissues affected with tumor cells. The coaxial electrospinning was performed using a sheath polymer solution consisting of a 14 wt% PCL solution and a 5 wt% solution of 5-FU as the core solution. Dimethylformamide (DMF) was used as the solvent ...


Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh 2015 Edith Cowan University

Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh

Mikhail Vasiliev

The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported ...


Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira 2015 Nanyang Technological University, Singapore

Is There A Relationship Between Research Sponsorship And Publication Impact? An Analysis Of Funding Acknowledgments In Nanotechnology Papers, Jue Wang, Philip Shapira

Philip Shapira

This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it ...


Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li 2015 University of Manchester; Georgia Institute of Technology

Social Science Contributions Compared In Synthetic Biology And Nanotechnology, Philip Shapira, Jan Youtie, Yin Li

Philip Shapira

With growing attention to societal issues and implications of synthetic biology, we investigate sources of social science publication knowledge in synthetic biology and probe what might be learned by comparison with earlier rounds of social science research in nanotechnology. “Social science” research is broadly defined to include publications in conventional social science as well as humanities, law, ethics, business, and policy fields. We examine the knowledge clusters underpinning social science publications in nanotechnology and synthetic biology using a methodology based on the analysis of cited references. Our analysis finds that social science research in synthetic biology already has traction and ...


Plasmonics On The Slope Of Enlightenment: The Role Of Transition Metal Nitrides, U. Guler, A. Kildishev, A. Boltasseva, V. Shalaev 2015 Nano Meta Technologies, Inc.

Plasmonics On The Slope Of Enlightenment: The Role Of Transition Metal Nitrides, U. Guler, A. Kildishev, A. Boltasseva, V. Shalaev

U. Guler

The key problem currently faced by plasmonics is related to material limitations. After almost two decades of extreme excitement and research largely based on the use of noble metals, scientists have come to a consensus on the importance of exploring alternative plasmonic materials to address application-specific challenges to enable the development of new functional devices. Such a change in motivation will undoubtedly lead to significant advancements in plasmonics technology transfer and could have a revolutionary impact on nanophotonic technologies in general. Here, we report on one of the approaches that, together with other new material platforms, mark an insightful technology-driven ...


Biomolecule Mediating Synthesis Of Inorganic Nanoparticles And Their Applications, Zengyan Wei 2015 City University of New York, Graduate Center

Biomolecule Mediating Synthesis Of Inorganic Nanoparticles And Their Applications, Zengyan Wei

All Dissertations and Theses, 2014-Present

Project 1.

The conventional phage display technique focuses on screening peptide sequences that can bind on target substrates, however the selected peptides are not necessary to nucleate and mediate the growth of the target inorganic crystals, and in many cases they only show moderate affinity to the targets. Here we report a novel phage display approach that can directly screen peptides catalytically growing inorganic nanoparticles in aqueous solution at room temperature. In this study, the phage library is incubated with zinc precursor at room temperature. Among random peptide sequences displayed on phages, those phages that can grow zinc oxide (ZnO ...


Nonequilibrium Transport Of Ionic Liquids In Electrified Nanosystems, Xikai Jiang 2015 Clemson University

Nonequilibrium Transport Of Ionic Liquids In Electrified Nanosystems, Xikai Jiang

All Dissertations

Room-temperature ionic liquids (RTILs) are a promising class of electrolyte that are composed entirely of ions but are liquid at room temperature. Their remarkable properties such as wide electrochemical window make them ideal electrolytes in many electrochemical systems. Because the non-equilibrium transport of RTILs often determines the performance of these systems, a fundamental understanding of such transport is needed. Here, using molecular dynamic (MD) and continuum simulations, we investigated the non-equilibrium transport of RTILs in three scenarios relevant to the application of RTILs in electrochemical systems: the electroosmotic flow (EOF) of RTILs through nanochannels, the electrokinetic transport of RTILs through ...


Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz 2015 United States Naval Research Laboratory

Probing The Enzymatic Activity Of Alkaline Phosphatase Within Quantum Dot Bioconjugates, Jonathan C. Claussen, Anthony Malanoski, Joyce C. Breger, Eunkeu Oh, Scott A. Walper, Kimihiro Susumu, Ramasis Goswami, Jeffrey R. Deschamps, Igor L. Medintz

Jonathan C. Claussen

Enzymes provide the critical means by which to catalyze almost all biological reactions in a controlled manner. Methods to harness and exploit their properties are of strong current interest to the growing field of biotechnology. In contrast to depending upon recombinant genetic approaches, a growing body of evidence suggests that apparent enzymatic activity can be enhanced when located at a nanoparticle interface. We use semiconductor quantum dots (QDs) as a well-defined and easily bioconjugated nanoparticle along with Escherichia coli-derived alkaline phosphatase (AP) as a prototypical enzyme to seek evidence for this process in a de novo model system. We began ...


Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai 2015 Michigan Technological University

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai

Dissertations, Master's Theses and Master's Reports - Open

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs ...


Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana 2015 Michigan Technological University

Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana

Dissertations, Master's Theses and Master's Reports - Open

Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder ...


Carbon Nanopipettes For Advanced Cellular Probing And Microinjection, Sean Eric Anderson 2015 University of Pennsylvania

Carbon Nanopipettes For Advanced Cellular Probing And Microinjection, Sean Eric Anderson

Publicly Accessible Penn Dissertations

Carbon nanopipettes (CNPs) consist of a pulled-quartz micropipette with a thin layer of amorphous carbon deposited along its entire interior surface via chemical vapor deposition. The micropipette maintains a continuous fluidic pathway from its nanoscopic tip to its distal macroscopic end, while the insulated carbon film provides an electrical path to the tip that can be used as a working electrode. The quartz at the tip of the CNP can be chemically etched to expose a desired length of a carbon pipe to control the size and characteristics of the electrode. CNPs are inexpensive, batch- fabricated, and can be made ...


Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert 2015 University of Pennsylvania

Nano-Bio Hybrid Electronic Sensors For Chemical Detection And Disease Diagnostics, Nicholas John Kybert

Publicly Accessible Penn Dissertations

The need to detect low concentrations of chemical or biological targets is ubiquitous in environmental monitoring and biomedical applications. The goal of this work was to address challenges in this arena by combining nanomaterials grown via scalable techniques with chemical receptors optimized for the detection problem at hand. Advances were made in the CVD growth of graphene, carbon nanotubes and molybdenum disulfide. Field effect transistors using these materials as the channel were fabricated using methods designed to avoid contamination of the nanomaterial surfaces. These devices were used to read out electronic signatures of binding events of molecular targets in both ...


Mechanisms Controlling Friction And Adhesion At The Atomic Length-Scale, Xin Zhou Liu 2015 University of Pennsylvania

Mechanisms Controlling Friction And Adhesion At The Atomic Length-Scale, Xin Zhou Liu

Publicly Accessible Penn Dissertations

A lack of understanding of the fundamental mechanisms governing atomic-scale adhesion and friction creates ongoing challenges as technologically-relevant devices are miniaturized. One major class of failure mechanisms of such devices results from high friction, adhesion, and wear. This thesis presents investigations into methods by which atomic-scale friction and adhesion can be controlled. Using atomic force microscopy (AFM), friction and adhesion properties of graphene were examined. While friction between the tip and graphene depends on thickness, as explained by the â??puckering effectâ??, adhesion is independent of the thickness when measured conventionally. However, adhesion is transiently higher when measured after the ...


Digital Commons powered by bepress