Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,719 Full-Text Articles 3,010 Authors 318,554 Downloads 30 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

1,719 full-text articles. Page 1 of 57.

Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho 2014 SelectedWorks

Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting graphene/polyaniline (GN@Pani) nanocomposite was prepared by the in-situ oxidative polymerization of aniline in the presence of GN and the surfactant, cetyltrimethylammonium bromide (CTAB). The micellar structure of CTAB assisted both, the formation of GN@Pani tubules and the dispersion of GN. Sheet-like GN was distributed uniformly in the Pani matrix, leading to high electrical conductivity because of the π-π interactions between Pani and GN. Studies of the thermoelectrical behavior using isothermal and cyclic aging techniques showed that GN@Pani possessed a high combination of electrical conductivity and thermal stability, even beyond 150°C. GN@Pani was ...


An Investigation Into The Role Of Energy And Symmetry At Epitaxial Interfaces, Gabriel A. Devenyi 2014 McMaster University

An Investigation Into The Role Of Energy And Symmetry At Epitaxial Interfaces, Gabriel A. Devenyi

Open Access Dissertations and Theses

Epitaxy is a key technological process for the production of thin films and nanostructures for electronic and optoelectronic devices. The epitaxial process has been traditionally studied through the lens of lattice-matched and chemically similar material systems, specifically the III-V quaternary material systems. This work investigates the role energy and symmetry play at epitaxial interfaces for cases far different than those of typical epitaxy. In the realm of energy, the impact of chemically dissimilar epitaxial interfaces was investigated, specifically between semiconductors and oxides, noble metals and oxides, and polar-on-nonpolar epitaxy. For symmetry at epitaxial interfaces, the role of symmetry breaking, through ...


Synthetic Jet Micropump, Sherif Abdou 2014 McMaster University

Synthetic Jet Micropump, Sherif Abdou

Open Access Dissertations and Theses

The production of a novel micropump based on the synthetic jet principle is investigated both numerically and experimentally. The proposed micropump consists of a synthetic jet actuator driven by a vibrating diaphragm issuing into an inverted T- shaped channel structure forming the inlet/outlet channels of the pump.

The software package Ansys is used to perform numerical investigations of the operation of the proposed micropump. Simulations were performed to study the effect of changing the inlet/outlet channel dimensions as well as the operating frequency, amplitude and duty cycle of the excitation signal. Inlet/outlet channel widths ranging from 200 ...


Chapters 5 And 6, Eng-Poh Ng Dr. 2014 SelectedWorks

Chapters 5 And 6, Eng-Poh Ng Dr.

Eng-Poh Ng

No abstract provided.


Mixed Culture Electrochemically Active Biofilms And Their Microscopic And Spectroelectrochemical Studies, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, J. Lee, M. H. Cho 2014 SelectedWorks

Mixed Culture Electrochemically Active Biofilms And Their Microscopic And Spectroelectrochemical Studies, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Mixed culture electrochemically active biofilms (EABs) were developed on carbon paper using a sludge with mixed culture bacteria for microscopic and pectroelectrochemical studies because a naturally mixed culture bacterial strain is more applicable than a pure culture strain. EAB development was confirmed by microbial fuel cells (MFCs) by obtaining a constant increase in potential (∼0.36 V). Microscopic and spectroscopic studies showed that a mixed culture EABs formed on the support. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, indicated that the EABs could be source of electrons and used effectively ...


Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho 2014 SelectedWorks

Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting nanocomposite film of polyaniline (Pani) with graphene (GN) was prepared by incorporating GN nanoplatelets in Pani matrix, followed by sulfonating it with fuming sulfuric acid. Sheet-like GN nanoplatelets were distributed uniformly in a Pani matrix, leading to high electrical conductivity due to π-π interaction between sulfonated Pani (s-Pani) and GN. Studies of the thermoelectrical behavior and ammonia-sensing behavior on GN@s-Pani showed high DC electrical conductivity retention under ageing conditions as well as excellent reproducible sensing response towards ammonia vapor in contrast to acid-protonated Pani.


Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho 2014 SelectedWorks

Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results ...


Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong 2014 SelectedWorks

Criterion For An Oscillatory Charged Jet During The Bubble Spinning Process, Ji-Huan He, H.Y. Kong

Ji-Huan He

The oscillatory diameter of the charged jet during the bubble electrospinning results in beads on the obtained nanofibers. We demonstrate that the applied voltage and the initial flow rate of the jet are the crucial parameters that are necessary to control morphology of the nanofibers. We also find that there is a criterion for production of smooth nanofibers without beads. The theory developed in this paper can be extended to the classical electrospinning and the blown bubble-spinning.


Characterization Of Airborne Particles Generated From Metal Active Gas Welding Processes, João F. Gomes 2014 SelectedWorks

Characterization Of Airborne Particles Generated From Metal Active Gas Welding Processes, João F. Gomes

João F Gomes

No abstract provided.


Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho 2013 SelectedWorks

Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag–ZnO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag–ZnO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag–ZnO nanocomposite possessed excellent ...


Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw 2013 University of Nebraska - Lincoln

Near-Infrared Surface-Enhanced Fluorescence Using Silver Nanoparticles In Solution, Michael D. Furtaw

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmonactive nanostructures of dye-labeled protein and silver nanoparticles ...


Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He 2013 University of Tennessee, Knoxville

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He

Doctoral Dissertations

Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the ...


Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera 2013 University of Tennessee, Knoxville

Adsorption And Diffusion Of Gases In Nano-Porous Materials, Nethika Sahani Suraweera

Doctoral Dissertations

In this work, a systematic computational study directed toward developing a molecular-level understanding of gas adsorption and diffusion characteristics in nano-porous materials is presented. Two different types of porous adsorbents were studied, one crystalline and the other amorphous. Physisorption and diffusion of hydrogen in ten iso-reticular metal-organic frameworks (IRMOFs) were investigated. A set of nine adsorbents taken from a class of novel, amorphous nano-porous materials composed of spherosilicate building blocks and isolated metal sites was also studied, with attention paid to the adsorptive and diffusive behavior of hydrogen, methane, carbon dioxide and their binary mixtures. Both classes of materials were ...


Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan 2013 University of Nevada, Las Vegas

Assessing Different Zeolitic Adsorbents For Their Potential Use In Kr And Xe Separation, Breetha Alagappan

UNLV Theses/Dissertations/Professional Papers/Capstones

Separation of Kr from Xe is an important problem in spent nuclear fuel fission gas management. The energy intensive and expensive cryogenic distillation method is currently used to separate these gases. In this thesis, we have carried out the research into appropriate sorbents for the separation of Kr and Xe using pressure swing adsorption. We have examined zeolites using gas adsorption studies as they have the potential to be more cost effective than other sorbents. Zeolites are microporous aluminosilicates and have ordered pore structures. The pores in zeolites have extra-framework cations are substantially free to move. The mobility of cations ...


Structure And Properties Of Polypropylene-Nanoclay Composites, Raghavendra R. Hegde Dr 2013 University of Tennessee, Knoxville

Structure And Properties Of Polypropylene-Nanoclay Composites, Raghavendra R. Hegde Dr

Raghavendra R Hegde Dr

The structure, morphology and mechanical properties of polypropylene-nanoclay composites with 1 to 15 wt.% nanoclay additives were investigated. Mixture of intercalated and exfoliated morphology was observed in nanocomposites. At higher weight percentage reinforcement (10–15 wt.%), up to 67 % improvement in tensile modulus is observed. At higher weight percentage, exclusion of clay additives at the boundary of spherulites was observed. This study illustrates that along with the thermodynamic driving force, spherulite formation also drives the ultimate morphology


A Simple Add-On Microfluidic Appliance For Accurately Sorting Small Populations Of Cells With High Fidelity, Michael Grad, Erik F. Young, Lubomir Smilenov, David J. Brenner, Daniel Attinger 2013 Iowa State University

A Simple Add-On Microfluidic Appliance For Accurately Sorting Small Populations Of Cells With High Fidelity, Michael Grad, Erik F. Young, Lubomir Smilenov, David J. Brenner, Daniel Attinger

Mechanical Engineering Publications and Papers

Current advances in single cell sequencing, gene expression and proteomics require the isolation of single cells, frequently from a very small source population. In this work we describe the design and characterization of a manually operated microfluidic cell sorter that (1) can accurately sort single or small groups of cells from very small cell populations with minimal losses, (2) that is easy to operate and that can be used in any laboratory that has a basic fluorescent microscope and syringe pump, (3) that can be assembled within minutes, (4) that can sort cells in very short time (minutes) with minimum ...


Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen 2013 Purdue University

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics ...


Thin Electrical Double Layer Simulation Of Micro-Electrochemical Supercapacitors, Kaitlyn Fisher, Guoping Xiong, Timothy S. Fisher 2013 Purdue University

Thin Electrical Double Layer Simulation Of Micro-Electrochemical Supercapacitors, Kaitlyn Fisher, Guoping Xiong, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

The deteriorating state of the environment has drawn many people to hybrid electric vehicles. Electrochemical micro-supercapacitors are of interest in this field because of their high power density relative to other micro-power sources. However, little is known about how the properties of the electrolyte used affect the performance of such devices. The first step of this investigation was to use thermoreflectance microscopy to measure the temperature change of the electrodes while charging and discharging supercapacitor samples. The components of these samples were graphitic petal electrodes with a Ti/Au covering (for enhanced light reflectance) on a SiO2 base, with ...


Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski 2013 Purdue University

Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

MEMS (Micro-electromechanical System) is a combined electrical and mechanical nano-scaled device with rapidly growing applications. We have developed a contacting radio frequency capacitive MEMS that is commonly used as capacitive switches and contact actuators in PRISM (Prediction of Reliability, Integrity and Survivability of Microsystems) lab at Purdue University. Our research team has focused on creating a simulation of MEMS’s survivability towards crazing and cracking. Our particular objective in this project is to create a tool that can help users perform complex quantitative calculations regarding the properties of different materials. This tool will generate various plots visualizing the properties, such ...


Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr. 2013 Purdue University

Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nature has created efficient strategies to make materials with hierarchical internal structure that often exhibit exceptional mechanical properties. One such example is found in cellulose, in fact it is eight times stronger than stainless steel and advantage is that cellulose incredibly cheap, because processing is obtained from purified wood pulp (it is environmental friendly). The most prevalent modeling technique to study the fundamental mechanical behavior of the crystalline cellulose has been Molecular Dynamics (MD). As a predictive tool, MD allows us to study the behavior of crystalline cellulose at the atomic level, and as such, it accurately predicts the crystalline ...


Digital Commons powered by bepress