Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,846 Full-Text Articles 8,024 Authors 1,425,719 Downloads 112 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,846 full-text articles. Page 1 of 157.

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin 2024 State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Recent Advances In Solar Photo(Electro)Catalytic Nitrogen Fixation, Jun-Bo Ma, Sheng Lin, Zhiqun Lin, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400–600 oC) and extremely highpressure (20–40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan 2024 Department of Chemistry, College of Chemistry and Chemical Engineering; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS); Engineering Research Center of Electrochemical Technologies of Ministry of Education; Xiamen University; Xiamen 361005, China

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao 2024 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Oral Administration Of Ph-Responsive Polymeric Nanoparticles Based On Zein And Their Therapeutic Potential On Cancer., Bruno Alejandro Valades-Aguilar, José Raúl Rangel-López, Jennifer Citlally Leos-Rivera, Moisés Armides Franco-Molina, María Cristina Rodríguez-Padilla, Diana Ginette Zárate-Triviño 2024 Universidad Autónoma de Nuevo León

Oral Administration Of Ph-Responsive Polymeric Nanoparticles Based On Zein And Their Therapeutic Potential On Cancer., Bruno Alejandro Valades-Aguilar, José Raúl Rangel-López, Jennifer Citlally Leos-Rivera, Moisés Armides Franco-Molina, María Cristina Rodríguez-Padilla, Diana Ginette Zárate-Triviño

Research Symposium

Background: Zein is a water-insoluble protein extracted from the endosperm of corn seeds, this polymer is an attractive matrix to encapsulate hydrophilic compounds because of its high proportion of hydrophobic amino acids, making it a potential smart delivery material for several treatments in the biopharmaceutical industry. nanoparticles have been used as drug delivery systems for the improvement of oral bioavailability; however, the strategies of nanoparticle obtention need the addition of stabilizers. in this study, a modified method to obtain zein nanoparticles was developed.

Methods: Zein nanoparticles (ZNps) were made by a thermal treatment and precipitated into ovalbumin at a ratio …


La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin 2024 The University of Texas Rio Grande Valley

La1-Xsrxcoo3 Perovskite Nanomaterial: Synthesis, Characterization, And Its Biomedical Application, Adhira Tippur, Anyet Shohag, Luke Franco, Ahmed Touhami, Swati Mohan, Mohammed Uddin

Research Symposium

Early cancer detection is paramount for effective treatment and potential cures. This research explores the application of perovskite materials, specifically Sr2+-doped Lanthanum Cobaltite (La1-xSrxCoO3) nanomaterials, in cancer detection, with a focus on rats as an experimental model. The ferroelectric nature of these materials, synthesized through a combination of sol-gel and molten-salt processes, was examined at varying Sr2+ doping levels (1-20 wt%). Rigorous characterization, employing X-ray diffraction and scanning electron microscopy, confirmed the uniform morphology of nano cubes, laying the foundation for subsequent investigations. The magnetic properties of the perovskite nanoparticles were probed, suggesting their potential as a diagnostic tool for …


Study On R&D Strategies In Nanoscale Science And Technology Of Powerhouses And Insights, Wenyue BIAN, Xingjie LIANG, Chunlei GE, Zhongyang HUI, Xiaoqi JIA, Si LIU, Jing YE, Xiaoyi CHEN, Wenjun WANG, Huajun JU 2024 Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Study On R&D Strategies In Nanoscale Science And Technology Of Powerhouses And Insights, Wenyue Bian, Xingjie Liang, Chunlei Ge, Zhongyang Hui, Xiaoqi Jia, Si Liu, Jing Ye, Xiaoyi Chen, Wenjun Wang, Huajun Ju

Bulletin of Chinese Academy of Sciences (Chinese Version)

Nanoscale science and technology (nano S&T) are at the frontier of global strategic high-tech competition. After examining nearly 160 strategy and planning documents released by scientific and technological powerhouses from 2000 to 2023, the study finds ten common approaches adopted by the powerhouses to advance nano S&T as follows. (1) Recognizing nano S&T as a key area for the economy and global competition. (2) Establishing cross-department organizations to meet the cross-disciplinary nature of nano S&T. (3) Developing strategic plans to guide the development of nano S&T and implementing major programs with significant investment. (4) Establishing multidisciplinary nano S&T research centers …


6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew 2024 Washington University in St. Louis

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu 2024 Louisiana Tech University

Blow-Spun Hybrid Pcl-Peo/Hnts Scaffolds With Enhanced Biological And Mechanical Properties, Meichen Liu

Doctoral Dissertations

With the development of technology and engineering, nanotechnology has been a multidisciplinary scientific field applied in nearly all science areas, including medicine, genetics, food industry, robotics. In this respect, nanomedicine has gained increasing attention and been a useful, effective therapy for cancer diagnosis, gene transfer, and drug delivery. To design an ideal nano drug delivery system with controlled drug releasing and improved encapsulated drug’s pharmacokinetic and pharmacodynamic profiles, hydrogels and polymer composites have witnessed increased research interest during the last decades. Recently, numerous polymers have been studied to fabricate the ideal wound dressing with biocompatibility, biodegradability, porous structural, and suitable …


Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu 2024 Louisiana Tech University

Selective Targeting Of Microglia By Quantum Dots And Green Synthesis Of Metal Organic Biohybrids; Applications In Dynamic Cell And Assay Systems, Navya Uppu

Doctoral Dissertations

Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population. Part of the glioma microenvironment are microglia, resident immune cells of the CNS that were thought to be involved in the pathogenesis of diverse neurodegenerative diseases. Though it remains uncertain what triggers microglial activation in these disorders, targeting and tracking microglial functions using nanotools like Quantum Dots (QDs) could help us elucidate them in such neurological diseases. This research focuses on the comparative study of different QDs formulations and their selective uptake by brain microglia in primary cultures …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng 2024 aState Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen 361005, Fujian, China

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang 2024 Institute for Sustainable Energy/College of Science, Shanghai University, Shanghai 201800, China

Joint Time-Frequency Analysis: Taking Charge Penetration Depth And Current Spatial Distribution In The Single Pore As An Example, Nan Wang, Qiu-An Huang, Wei-Heng Li, Yu-Xuan Bai, Jiu-Jun Zhang

Journal of Electrochemistry

In recent years, joint time-frequency analysis has once again become a research hotspot. Supercapacitors have high power density and long service life, however, in order to balance between power density and energy density, two key factors need to be considered: (i) the specific surface area of the porous matrix; (ii) the electrolyte accessibility to the intra-pore space of porous carbon matrix. Electrochemical impedance spectra are extensively used to investigate charge penetration ratio and charge storage mechanism in the porous electrode for capacitance energy storage. Furthermore, similar results could be obtained by different methods such as stable-state analysis in the frequency …


Smartphone Color Error Analysis, Mackenna Hawes 2024 Purdue University

Smartphone Color Error Analysis, Mackenna Hawes

The Journal of Purdue Undergraduate Research

No abstract provided.


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang 2024 New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society of Electrochemistry 2024 Chinese Chemical Society | Xiamen University

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma 2024 Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Rational Design Of Heterostructured Nanomaterials For Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics In Alkaline Media, Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma

Journal of Electrochemistry

Owing to the merits of high energy density, as well as clean and sustainable properties, hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels. Electrocatalytic hydrogen evolution reaction (HER) has been considered to be mostly promising for achieving green hydrogen production, and has been widely studied in acidic and alkaline solutions. In particular, HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials. However, for the currently most prominent catalyst Pt, its HER kinetics in an alkaline solution is generally 2–3 orders lower than that …


Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, CheolGi Kim 2024 DGIST

Tailored Micromagnet Sorting Gate For Simultaneous Multiple Cell Screening In Portable Magnetophoretic Cell-On-Chip Platforms, Jonghwan Yoon, Yumin Kang, Hyeonseol Kim, Abbas Ali, Keonmok Kim, Sri Ramulu Torati, Mi-Young Im, Changyeop Jeon, Byeonghwa Lim, Cheolgi Kim

Bioelectronics Publications

Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion …


The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda de Oliveira Nogueira 2023 University of Maine

The Development Of An Advanced Biorefinery To Produce Cellulosic Sugars And Bionanomaterials, Carlaile Fernanda De Oliveira Nogueira

Electronic Theses and Dissertations

Market trends show growing interest in cellulose nanomaterials due to their low environmental impact. However, current nanocellulose isolation technologies face technoeconomic and life cycle limitations. Previous research has shown that enzymatic treatments effectively reduce the energy input for mechanical nanocellulose isolation. Simultaneously, there is potential to improve the viability of cellulosic ethanol facilities by coproducing nanocelluloses as high-value product obtained from agricultural feedstock. Here, our goal was to study the mass balance of enzymatic-mechanical processes that coproduces cellulosic sugars and nanocelluloses, evaluating the technical feasibility of converting lignified and non-lignified materials.

First, we have determined a feasible 50:50 mass ratio …


Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman 2023 University of Maine

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas 2023 University of New Mexico - Main Campus

Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas

Nanoscience and Microsystems ETDs

Non-intrusive solutions for communication through a sealed metal vessel requires the use of piezoelectric transducers to transmit acoustic waves through the vessel wall. This approach suffers the disadvantage of compromised security because a potential eavesdropper could decipher the correlation between digital and electric signals of both sides of the system. One solution is a mixed physics system employing magnetostrictive transducers.

For a magnetostrictive transducer to work well in this application, it would have to have a high piezomagnetic constant. This is influenced by soft magnetism and saturation magnetostriction. Nickel-Iron-Cobalt alloys are modified to retain their soft magnetic properties while increasing …


Viability Of Magnetic Nanoparticles For Magnetic Hyperthermia Cancer Therapy, Marcos Adrian Garcia 2023 University of Texas at El Paso

Viability Of Magnetic Nanoparticles For Magnetic Hyperthermia Cancer Therapy, Marcos Adrian Garcia

Open Access Theses & Dissertations

Over the last few decades magnetic nanoparticles have gained an extraordinary amount of attention in the science community. Their versatile use in many different research areas such as medicine, engineering and technology and many other areas has made them a popular subject. In this thesis, the synthesis of different systems of magnetic nanoparticles will be explored along with the potential use of the MNP's as viable candidates for Magnetic Hyperthermia Cancer Therapy. With values of over 200 emu/g for Iron-Silver magnetic nanoparticles with particle sizes ranging from 30-70nm and their heating properties under an AC magnetic field. As well of …


Digital Commons powered by bepress