Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

1,949 Full-Text Articles 3,354 Authors 860,734 Downloads 78 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

1,949 full-text articles. Page 1 of 78.

Binder Free Graphene Hybridized Fe3o4 Nanoparticles For Supercapacitor Applications, Nathan D. Jansen 2018 Portland State University

Binder Free Graphene Hybridized Fe3o4 Nanoparticles For Supercapacitor Applications, Nathan D. Jansen

Undergraduate Research & Mentoring Program

In a world with increasing energy demands, the need for safe and mobile energy storage grows. There are a number of renewable energy sources that can be harvested, however peak demand and peak production times tend to not overlap. As the capabilities of collecting the energy grows so does the need to store the energy for later consumption. The two promising methods of storing energy are batteries or supercapacitors. Both technologies employ an electrode consisting of an active material bound to a current collector. This material participates in a redox reaction, storing charge electrochemically to later be used as energy ...


Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik 2018 Louisiana State University and Agricultural and Mechanical College

Voltage-Controlled Deposition Of Nanoparticles For Next Generation Electronic Materials, Subhodip Maulik

LSU Doctoral Dissertations

This work presents both a feasibility study and an investigation into the voltage-controlled spray deposition of different nanoparticles, namely, carbon nanotubes (CNTs), as well as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) from the transition metal dichalcogenides (TMDCs) family of materials. The study considers five different types of substrates as per their potential application to next-generation device electronics. The substrates selected for this research were: 1) aluminum as a conducting substrate, 2) silicon as a semiconducting substrate, 3) glass, silicon dioxide (SiO2), and syndiotactic poly methyl methacrylate (syndiotactic PMMA) as insulating substrates.

Since the 1990’s, carbon ...


Immunostimulatory Effects Of Antigen-Conjugated Inp/Zns Quantum Dot Nanoparticles In An Avian Model, Christopher Lyle 2018 University of Arkansas, Fayetteville

Immunostimulatory Effects Of Antigen-Conjugated Inp/Zns Quantum Dot Nanoparticles In An Avian Model, Christopher Lyle

Theses and Dissertations

Due to their unique physicochemical and enhanced immunostimulatory properties, quantum dot (QD) nanoparticles have shown increasing promise in biomedical research applications including bioimaging, drug delivery, and as vaccine adjuvants. Toxicity, however, remains a concern for the use of QD in these applications and thus, there is an increased demand for effective in vitro and in vivo systems to measure the bioactivity of QD. In this study in vitro and in vivo chicken models were used to investigate the effects of QD on innate and adaptive immunity. Chicken macrophage cultures were treated in vitro with QD to measure macrophage activation and ...


Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic 2018 University of Arkansas, Fayetteville

Degradation Of Orange G Through Persulfate Activated Nanoscale Zerovalent Iron Composites And Boron-Doped Diamond Electrodes, Suzana Ivandic

Chemical Engineering Undergraduate Honors Theses

Properly treated wastewater is necessary for water reuse and to avoid unnecessary impacts on the environment. The poultry industry utilizes large amounts of water for poultry processing. The need for innovative ways to treat organic contaminants in the poultry wastewater industry is especially necessary due to increased poultry consumption. The U.S. Department of Agriculture projected Americans would consume approximately 92 pounds of chicken per person in 2017.1 Dissolved air flotation (DAF) is currently used in poultry wastewater treatment, but DAF does not remove organic contaminants efficiently per effluent standards. Implementation of processes that degrade contaminants directly would benefit ...


State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei 2018 University of Arkansas, Fayetteville

State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei

Theses and Dissertations

Cerebral cortex exhibits vigorous ongoing, internal neural activity even with no sensory input is present or the animal is minimally engaged in a task or behavior. This internal ongoing activity is not static; the ‘cortical state’ varies ranging from synchronous and highly correlated activity to asynchronous and weakly correlated neural activity. The main goal of the work presented here is to understand how changes in cortical states effect several aspects of cortical function and dynamics.

To meet this goal, we did three separate projects. First, we compared the predictability of neuronal network dynamics across cortical states in somatosensory cortex of ...


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack 2018 University of Arkansas, Fayetteville

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition ...


Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert 2018 University of Arkansas, Fayetteville

Non-Covalent Functionalization Of Graphene Films For Uniform Nanoparticle Deposition Via Atoic Layer Deposition, Ty Seiwert

Mechanical Engineering Undergraduate Honors Theses

Graphene functionalized with platinum (Pt) and palladium (Pd) has proven to be highly effective as a hydrogen sensor. Deposition methods such as Atomic layer deposition (ALD) can be further enhanced by pretreating the graphene with a non-covalent surfactant prior to nanoparticle deposition. In this study, graphene-based sensing devices will be fabricated by ALD deposition. The graphene will be non-covalently functionalized using sodium dodecyl sulfate (SDS) anionic surfactant prior to ALD deposition. The aim of this study is to test the deposition pattern achieved by varying the amount of time that graphene is treated with the SDS surfactant. Initially, ALD deposition ...


Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan 2018 University of Arkansas, Fayetteville

Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan

Theses and Dissertations

One challenge of investigating ferroelectrics at the nanoscale has been controlling the stoichiometry during growth. Historically, the growth of barium titanate (BaTiO3) by molecular beam epitaxy has relied on a growth technique called shuttered RHEED. Shuttered RHEED controls the stoichiometry of barium titanate through the precise deposition of alternating layers of BaO and TiO2. While this approach has achieved 1% control of stoichiometry, finding self-limiting mechanisms to lock-in stoichiometry has been the focus of the growth community. The Goldschmidt tolerance factor predicts an unstable perovskite when barium sits in the titanium lattice site. The BaO-TiO2 phase diagram predicts a low-solubility ...


Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang 2018 University of Arkansas, Fayetteville

Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang

Theses and Dissertations

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are investigated. A hydrophobic/anti-reflective surface coating which not only repels water from the top glass of a PV panel but at the same time reduces its light reflectance is investigated. COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar energy harvest from 400nm-700nm. The addition of a polymer layer on these ellipsoid rods broadens the light incident angle from 23° to 34°, from which light can be efficiently absorbed. Based on ...


Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal 2018 University of Arkansas, Fayetteville

Glucose Level Estimation Based On Invasive Electrochemical, And Non-Invasive Optical Sensing Methods, Sanghamitra Mandal

Theses and Dissertations

The purpose of this research is to design and fabricate sensors for glucose detection using inexpensive approaches. My first research approach is the fabrication of an amperometric electrochemical glucose sensor, by exploiting the optical properties of semiconductors and structural properties of nanostructures, to enhance the sensor sensitivity and response time. Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted chemical etching of silicon (Si) to synthesize Si nanowires. The concept of gold nano-electrode ensembles is then employed to the sensors in order to boost the current ...


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan 2018 University of Arkansas, Fayetteville

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant ...


Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder 2018 University of Arkansas, Fayetteville

Effects Of Hydration And Mineralization On The Mechanical Behavior Of Collagen Fibrils, Marco Fielder

Theses and Dissertations

Bone is a composite biomaterial with a structural load-bearing function. Understanding the biomechanics of bone is important for characterizing factors such as age, trauma, or disease, and in the development of scaffolds for tissue engineering and bioinspired materials. At the nanoscale, bone is primarily composed of collagen protein, apatite crystals, and water. Though several studies have characterized nanoscale bone mechanics as the mineral content changes, the effect of water, mineral, and carbon nanotube (CNT) content and distribution in fibril gap and overlap regions is unexplored. This study used molecular dynamics to investigate the change in collagen fibril deformation mechanisms as ...


Investigating Phase Transition Temperatures Of Size Separated Gadolinium Silicide Magnetic Nanoparticles, Shivakumar G. Hunagund, Shane M. Harstad, Ahmed A. El-Gendy, Shalbh Gupta, Vitalij K. Pecharsky, Ravi L. Hadimani 2018 Virginia Commonwealth University

Investigating Phase Transition Temperatures Of Size Separated Gadolinium Silicide Magnetic Nanoparticles, Shivakumar G. Hunagund, Shane M. Harstad, Ahmed A. El-Gendy, Shalbh Gupta, Vitalij K. Pecharsky, Ravi L. Hadimani

Ames Laboratory Accepted Manuscripts

Gadolinium silicide (Gd5Si4) nanoparticles (NPs) exhibit different properties compared to their parent bulk materials due to finite size, shape, and surface effects. NPs were prepared by high energy ball-milling of the as-cast Gd5Si4ingot and size separated into eight fractions using time sensitive sedimentation in an applied dc magnetic field with average particle sizes ranging from 700 nm to 82 nm. The largest Gd5Si4 NPs order ferromagnetically at 316 K. A second anomaly observed at 110 K can be ascribed to a Gd5Si3 impurity. As the particle sizes decrease, the volume fraction of Gd5Si3 phase increases at the expense of the ...


Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian 2018 University of Kentucky

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian

Center for Applied Energy Research Faculty Patents

A method is provided for producing germanium nanowires encapsulated within multi-walled carbon nanotubes. The method includes the steps of performing chemical vapor deposition using a combined germanium and carbon source having a general formula of GeR(4-x)Lx, where x=0, 1, 2, or 3; R is selected from a group consisting of alkyl, cycloalkyl or aryl and L=hydrogen, halide or alkoxide and growing germanium nanowires encapsulated within multi-walled carbon nanotubes on a substrate. A reaction product of that method or process is also provided.


Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay 2018 Louisiana State University

Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay

LSU Doctoral Dissertations

A confocal micro-particle image velocimetry (C-μPIV) technique along with associated post-processing algorithms is detailed for obtaining three dimensional distributions of nano-particle velocity and concentrations at select locations of the 2.5D (pseudo 3D) Poly(methyl methacrylate) (PMMA) and ceramic micro-model. The designed and fabricated 2.5D micro-model incorporates microchannel networks with 3D wall structures with one at observation wall which resembles fourteen morphological and flow parameters to those of fully 3D actual reservoir rock (Boise Sandstone) at resolutions of 5 and 10 μm in depth and 5 and 25 μm on plane. In addition, an in-situ, non-destructive method for measuring ...


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson 2018 Southern Methodist University

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations ...


Printed Graphene Electrochemical Biosensors Fabricated By Inkjet Maskless Lithography For Rapid And Sensitive Detection Of Organophosphates, John A. Hondred, Joyce C. Breger, Nathan J. Alves, Scott A. Trammell, Scott A. Walper, Igor L. Medintz, Jonathan C. Claussen 2018 Iowa State University

Printed Graphene Electrochemical Biosensors Fabricated By Inkjet Maskless Lithography For Rapid And Sensitive Detection Of Organophosphates, John A. Hondred, Joyce C. Breger, Nathan J. Alves, Scott A. Trammell, Scott A. Walper, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here we report a graphene-based electrode developed via Inkjet Maskless Lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ~25 nm) to improve its electrical conductivity (sheet resistance decreased ...


Replica Molding-Based Nanopatterning Of Tribocharge On Elastomer With Application To Electrohydrodynamic Nanolithography, Qiang Li, Akshit Peer, In-Ho Cho, Rana Biswas, Jaeyoun Kim 2018 Iowa State University

Replica Molding-Based Nanopatterning Of Tribocharge On Elastomer With Application To Electrohydrodynamic Nanolithography, Qiang Li, Akshit Peer, In-Ho Cho, Rana Biswas, Jaeyoun Kim

Ames Laboratory Accepted Manuscripts

Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. By applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, we ...


Nanoindentation Study Of Corrosion-Induced Grain Boundary Degradation In A Pipeline Steel, Denizhan Yavas, Pratyush Mishra, Abdullah Alshehri, Pranav Shrotriya, Kurt R. Hebert, Ashraf F. Bastawros 2018 Iowa State University

Nanoindentation Study Of Corrosion-Induced Grain Boundary Degradation In A Pipeline Steel, Denizhan Yavas, Pratyush Mishra, Abdullah Alshehri, Pranav Shrotriya, Kurt R. Hebert, Ashraf F. Bastawros

Aerospace Engineering Publications

High-strength low-alloy steels used for oil and gas pipelines are vulnerable to intergranular stress corrosion cracking in moderately alkaline soils. The mechanism of corrosion-induced embrittlement under such conditions is not yet understood. Nanoindentation was used to detect localized degradation of mechanical properties near internal grain boundaries of X-70 steel undergoing intergranular corrosion at active dissolution potentials at pH 8.2. The measurements identified a one-micron thick mechanically-degraded layer with 25% reduced hardness near corroded grain boundaries. It is suggested that the corrosion process may introduce an active softening agent, possibly non-equilibrium lattice vacancies generated by oxidation.


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian 2018 Old Dominion University

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is ...


Digital Commons powered by bepress