Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2,018 Full-Text Articles 3,286 Authors 860,734 Downloads 74 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

2,018 full-text articles. Page 1 of 76.

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian 2018 University of Kentucky

Method For Production Of Germanium Nanowires Encapsulated Within Multi-Walled Carbon Nanotubes, Mark Crocker, Rodney Andrews, Arumugam Pandurangan, Dali Qian

Center for Applied Energy Research Faculty Patents

A method is provided for producing germanium nanowires encapsulated within multi-walled carbon nanotubes. The method includes the steps of performing chemical vapor deposition using a combined germanium and carbon source having a general formula of GeR(4-x)Lx, where x=0, 1, 2, or 3; R is selected from a group consisting of alkyl, cycloalkyl or aryl and L=hydrogen, halide or alkoxide and growing germanium nanowires encapsulated within multi-walled carbon nanotubes on a substrate. A reaction product of that method or process is also provided.


Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay 2018 Louisiana State University

Mobility Of Nano-Particles In Rock Based Micro-Models, Jagannath Upadhyay

LSU Doctoral Dissertations

A confocal micro-particle image velocimetry (C-μPIV) technique along with associated post-processing algorithms is detailed for obtaining three dimensional distributions of nano-particle velocity and concentrations at select locations of the 2.5D (pseudo 3D) Poly(methyl methacrylate) (PMMA) and ceramic micro-model. The designed and fabricated 2.5D micro-model incorporates microchannel networks with 3D wall structures with one at observation wall which resembles fourteen morphological and flow parameters to those of fully 3D actual reservoir rock (Boise Sandstone) at resolutions of 5 and 10 μm in depth and 5 and 25 μm on plane. In addition, an in-situ, non-destructive method for measuring ...


Replica Molding-Based Nanopatterning Of Tribocharge On Elastomer With Application To Electrohydrodynamic Nanolithography, Qiang Li, Akshit Peer, In-Ho Cho, Rana Biswas, Jaeyoun Kim 2018 Iowa State University

Replica Molding-Based Nanopatterning Of Tribocharge On Elastomer With Application To Electrohydrodynamic Nanolithography, Qiang Li, Akshit Peer, In-Ho Cho, Rana Biswas, Jaeyoun Kim

Ames Laboratory Accepted Manuscripts

Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. By applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, we ...


Nanoindentation Study Of Corrosion-Induced Grain Boundary Degradation In A Pipeline Steel, Denizhan Yavas, Pratyush Mishra, Abdullah Alshehri, Pranav Shrotriya, Kurt R. Hebert, Ashraf F. Bastawros 2018 Iowa State University

Nanoindentation Study Of Corrosion-Induced Grain Boundary Degradation In A Pipeline Steel, Denizhan Yavas, Pratyush Mishra, Abdullah Alshehri, Pranav Shrotriya, Kurt R. Hebert, Ashraf F. Bastawros

Aerospace Engineering Publications

High-strength low-alloy steels used for oil and gas pipelines are vulnerable to intergranular stress corrosion cracking in moderately alkaline soils. The mechanism of corrosion-induced embrittlement under such conditions is not yet understood. Nanoindentation was used to detect localized degradation of mechanical properties near internal grain boundaries of X-70 steel undergoing intergranular corrosion at active dissolution potentials at pH 8.2. The measurements identified a one-micron thick mechanically-degraded layer with 25% reduced hardness near corroded grain boundaries. It is suggested that the corrosion process may introduce an active softening agent, possibly non-equilibrium lattice vacancies generated by oxidation.


Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian 2018 Old Dominion University

Electroosmotic Flow Of Viscoelastic Fluid In A Nanoslit, Lanju Mei, Hongna Zhang, Hongxia Meng, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

The electroosmotic flow (EOF) of viscoelastic fluid in a long nanoslit is numerically studied to investigate the rheological property effect of Linear Phan-Thien-Tanner (LPTT) fluid on the fully developed EOF. The non-linear Poisson-Nernst-Planck equations governing the electric potential and the ionic concentration distribution within the channel are adopted to take into account the effect of the electrical double layer (EDL), including the EDL overlap. When the EDL is not overlapped, the velocity profiles for both Newtonian and viscoelastic fluids are plug-like and increase sharply near the charged wall. The velocity profile resembles that of pressure-driven flow when the EDL is ...


Monitoring The Stimulated Uncapping Process Of Gold-Capped Mesoporous Silica Nanoparticles, Ashley E. Augspurger, Xiaoxing Sun, Brian G. Trewyn, Ning Fang, Anthony S. Stender 2018 Iowa State University and Ames Laboratory

Monitoring The Stimulated Uncapping Process Of Gold-Capped Mesoporous Silica Nanoparticles, Ashley E. Augspurger, Xiaoxing Sun, Brian G. Trewyn, Ning Fang, Anthony S. Stender

Ames Laboratory Accepted Manuscripts

To establish a new method for tracking the interaction of nanoparticles with chemical cleaving agents, we exploited the optical effects caused by attaching 5–10 nm gold nanoparticles with molecular linkers to large mesoporous silica nanoparticles (MSN). At low levels of gold loading onto MSN, the optical spectra resemble colloidal suspensions of gold. As the gold is removed, by cleaving agents, the MSN revert to the optical spectra typical of bare silica. Time-lapse images of gold-capped MSN stationed in microchannels reveal that the rate of gold release is dependent on the concentration of the cleaving agent. The uncapping process was ...


Ionic Depletion At The Crystalline Gibbs Layer Of Peg-Capped Gold Nanoparticle Brushes At Aqueous Surfaces, Wenjie Wang, Honghu Zhang, Surya Mallapragada, Alex Travesset, David Vaknin 2018 Ames Laboratory

Ionic Depletion At The Crystalline Gibbs Layer Of Peg-Capped Gold Nanoparticle Brushes At Aqueous Surfaces, Wenjie Wang, Honghu Zhang, Surya Mallapragada, Alex Travesset, David Vaknin

Surya K. Mallapragada

In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that ...


Effect Of Stacking Fault Energy On Mechanism Of Plastic Deformation In Nanotwinned Fcc Metals, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King, Richard A. Lesar 2018 The Ames Laboratory

Effect Of Stacking Fault Energy On Mechanism Of Plastic Deformation In Nanotwinned Fcc Metals, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King, Richard A. Lesar

Richard Alan Lesar

Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes ...


Modeling The Interphase Of A Polymer-Based Nanodielectric, Connor S. Daily, Weixing Sun, Michael R. Kessler, Xiaoli Tan, Nicola Bowler 2018 Iowa State University

Modeling The Interphase Of A Polymer-Based Nanodielectric, Connor S. Daily, Weixing Sun, Michael R. Kessler, Xiaoli Tan, Nicola Bowler

Xiaoli Tan

A three-phase theoretical model is proposed that is suitable for describing the effective permittivity of polymer-matrix composites containing spherical nanoparticles. The model accounts for the presence of an interphase region, which surrounds each nanosphere, whose permittivity is allowed to be different from that of the matrix polymer. The nanoparticles themselves are approximated as hard (non-overlapping) spheres, whereas the interphase regions of neighboring nanoparticles are permitted to overlap. The volume fraction of the interphase region is computed by assuming that the nanoparticles are arranged on the nodes of a simple-cubic lattice. The effective permittivity of the composite is subsequently computed via ...


Assembling Bare Au Nanoparticles At Positively Charged Templates, Wenjie Wang, Honghu Zhang, Ivan Kuzmenko, Surya K. Mallapragada, David Vaknin 2018 Ames Laboratory

Assembling Bare Au Nanoparticles At Positively Charged Templates, Wenjie Wang, Honghu Zhang, Ivan Kuzmenko, Surya K. Mallapragada, David Vaknin

Surya K. Mallapragada

In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the ...


Protein Patterns Template Arrays Of Magnetic Nanoparticles, Srikanth Nayak, Honghu Zhang, Xunpei Liu, Shuren Feng, Pierre Palo, Marit Nilsen-Hamilton, Mufit Akinc, Surya K. Mallapragada 2018 Iowa State University and Ames Laboratory

Protein Patterns Template Arrays Of Magnetic Nanoparticles, Srikanth Nayak, Honghu Zhang, Xunpei Liu, Shuren Feng, Pierre Palo, Marit Nilsen-Hamilton, Mufit Akinc, Surya K. Mallapragada

Surya K. Mallapragada

Controlling the morphology of magnetic nanoparticles and their spatial arrangement is crucial for manipulating their functional properties. The commonly available inorganic processes for the synthesis of uniform magnetic nanoparticles typically require extreme reaction conditions such as high temperatures or harsh reagents, rendering them unsuitable for making functionalized magnetic nanoparticles with tunable properties controlled by biomolecules. Biomimetic procedures, inspired by the production of uniform magnetite and greigite crystals in magnetotactic bacteria, provide an alternative method, which can allow synthesis and spatial arrangement under ambient conditions. Mms6, an amphiphilic protein found in magnetosome membranes in Magnetospirillum magneticum strain AMB-1, can control the ...


Effects Of Grain Boundary Disorder On Yield Strength, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King 2018 Iowa State University and Ames Laboratory

Effects Of Grain Boundary Disorder On Yield Strength, Valery Borovikov, Mikhail I. Mendelev, Alexander H. King

Materials Science and Engineering Publications

It was recently reported that segregation of Zr to grain boundaries (GB) in nanocrystalline Cu can lead to the formation of disordered intergranular films [1,2]. In this study we employ atomistic computer simulations to study how the formation of these films affects the dislocation nucleation from the GBs. We found that full disorder of the grain boundary structure leads to the suppression of dislocation emission and significant increase of the yield stress. Depending on the solute concentration and heat-treatment, however, a partial disorder may also occur and this aids dislocation nucleation rather than suppressing it, resulting in elimination of ...


Printed Graphene Electrochemical Biosensors Fabricated By Inkjet Maskless Lithography For Rapid And Sensitive Detection Of Organophosphates, John A. Hondred, Joyce C. Breger, Nathan J. Alves, Scott A. Trammell, Scott A. Walper, Igor L. Medintz, Jonathan C. Claussen 2018 Iowa State University

Printed Graphene Electrochemical Biosensors Fabricated By Inkjet Maskless Lithography For Rapid And Sensitive Detection Of Organophosphates, John A. Hondred, Joyce C. Breger, Nathan J. Alves, Scott A. Trammell, Scott A. Walper, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Solution phase printing of graphene-based electrodes has recently become an attractive low-cost, scalable manufacturing technique to create in-field electrochemical biosensors. Here we report a graphene-based electrode developed via Inkjet Maskless Lithography (IML) for the direct and rapid monitoring of triple-O linked phosphonate organophosphates (OPs); these constitute the active compounds found in chemical warfare agents and pesticides that exhibit acute toxicity as well as long-term pollution to soils and waterways. The IML printed graphene electrode is nano/microstructured with a 1000 mW benchtop laser engraver and electrochemically deposited platinum nanoparticles (dia. ~25 nm) to improve its electrical conductivity (sheet resistance decreased ...


An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joesph A. Turner, Hani Alanazi, Charles Nguyen 2018 University of Nebraska-Lincoln

An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joesph A. Turner, Hani Alanazi, Charles Nguyen

Mechanical & Materials Engineering Faculty Publications

Effective properties and structural performance of cementitious mixtures are substantially governed by the quality of the interphase region because it acts as a bridge transferring forces between aggregates and a binding matrix and is generally susceptible to damage. As alternative binding agents like alkali-activated precursors have obtained substantial attention in recent years, there is a growing need for fundamental knowledge to uncover interphase formation mechanisms. In this paper, two different types of binding materials, i.e., fly ash-based geopolymer and ordinary portland cement, were mixed with limestone aggregate to examine and compare the microstructures and nanomechanical properties of interphase region ...


An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joseph A. Turner, Hani Alanazi, Charles Nguyen 2018 University of Nebraska - Lincoln

An Integrated Microstructural-Nanomechanical-Chemical Approach To Examine Material-Specific Characteristics Of Cementitious Interphase Regions, Mahdieh Khedmati, Yong-Rak Kim, Joseph A. Turner, Hani Alanazi, Charles Nguyen

Mechanical & Materials Engineering Faculty Publications

Effective properties and structural performance of cementitious mixtures are substantially governed by the quality of the interphase region because it acts as a bridge transferring forces between aggregates and a binding matrix and is generally susceptible to damage. As alternative binding agents like alkali-activated precursors have obtained substantial attention in recent years, there is a growing need for fundamental knowledge to uncover interphase formation mechanisms. In this paper, two different types of binding materials, i.e., fly ash-based geopolymer and ordinary portland cement, were mixed with limestone aggregate to examine and compare the microstructures and nanomechanical properties of interphase region ...


Flow Patterns Through Vascular Graft Models With And Without Cuffs, Chia Min Leong, Gary B. Nackman, Timothy Wei 2018 Rensselaer Polytechnic Institute

Flow Patterns Through Vascular Graft Models With And Without Cuffs, Chia Min Leong, Gary B. Nackman, Timothy Wei

Mechanical & Materials Engineering Faculty Publications

The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs±with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle ...


An Experimental Study On Static And Dynamic Strain Sensitivity Of Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini 2018 University of Perugia

An Experimental Study On Static And Dynamic Strain Sensitivity Of Smart Concrete Sensors Doped With Carbon Nanotubes For Shm Of Large Structures, Andrea Meoni, Antonella D'Alessandro, Austin Downey, Enrique García-Macías, Marco Rallini, A. Luigi Materazzi, Luigi Torre, Simon Laflamme, Rafael Castro-Triguero, Filippo Ubertini

Civil, Construction and Environmental Engineering Publications

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the ...


Comparative Study Of Magnetic Properties Of Nanoparticles By High-Frequency Heat Dissipation And Conventional Magnetometry, V. Malik, J. Goodwill, Surya K. Mallapragada, Tanya Prozorov, Ruslan Prozorov 2017 Ames Laboratory

Comparative Study Of Magnetic Properties Of Nanoparticles By High-Frequency Heat Dissipation And Conventional Magnetometry, V. Malik, J. Goodwill, Surya K. Mallapragada, Tanya Prozorov, Ruslan Prozorov

Surya K. Mallapragada

The rate of heating of 15 nm uniformly-sized magnetic aqueous nanoparticles suspension by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements of a frozen colloid by fitting field-dependent magnetization to a Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally ...


Self-Assembly Of Dna Functionalized Gold Nanoparticles At The Liquid-Vapor Interface, Honghu Zhang, Wenjie Wang, Noah Hagen, Ivan Kuzmenko, Mufit Akinc, Alex Travesset, Surya K. Mallapragada, David Vaknin 2017 Iowa State University and Ames Laboratory

Self-Assembly Of Dna Functionalized Gold Nanoparticles At The Liquid-Vapor Interface, Honghu Zhang, Wenjie Wang, Noah Hagen, Ivan Kuzmenko, Mufit Akinc, Alex Travesset, Surya K. Mallapragada, David Vaknin

Surya K. Mallapragada

Surface sensitive synchrotron X-ray scattering and spectroscopy are used to monitor and characterize the spontaneous formation of 2D Gibbs monolayers of thiolated single-stranded DNA-functionalized gold nanoparticles (ssDNA-AuNPs) at the vapor–solution interface by manipulating salt concentrations. Grazing incidence small-angle X-ray scattering and X-ray reflectivity show that the noncomplementary ssDNA-AuNPs dispersed in aqueous solution spontaneously accumulate at the vapor–liquid interface in the form of a single layer by increasing MgCl2 or CaCl2 concentrations. Furthermore, the monoparticle layer undergoes a transformation from short- to long-range (hexagonal) order above a threshold salt-concentration. Using various salts at similar ionic strength to those of ...


Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh 2017 University of Nebraska - Lincoln

Femtosecond Laser Micromachining Of Low-Temperature Co-Fired Ceramic And Glass Fiber Reinforced Polymer Printed Circuit Boards Materials, Raif Farkouh

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

Low-temperature co-fired ceramic (LTCC), and glass fiber reinforced polymer (GFRP) printed circuit boards (PCBs) are two materials used for the packaging of electronics. The excellent mechanical and electrical properties of LTCC, combined with the ability to embed passive components offer superior radio frequency (RF) performance and device miniaturization for high-frequency applications. Due to its unique properties, LTCC provides superior performance in applications as diverse as military radar, imaging systems, advanced automotive sensing, telecommunications, and satellites. The use of LTCC in these applications has created a demand for the micromachining of holes, channels, and cavities with specific geometries and structures. Likewise ...


Digital Commons powered by bepress