Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2,729 Full-Text Articles 5,052 Authors 1,005,106 Downloads 87 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

2,729 full-text articles. Page 5 of 113.

3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li 2019 Kansas State University

3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li

Mechanical & Materials Engineering Faculty Publications

This study reports a 3D freeze-printing method that integrates inkjet printing and freeze casting to control both the microstructure and macroporosity via formation of ice microcrystals during printing. A viscous aqueous ink consisting of a molecular MoS2 precursor (ammonium thiomolybdate) mixed with graphene oxide (GO) nanosheets is used in the printing process. Post-treatments by freeze-drying and reductive thermal annealing convert the printed intermediate mixture into a hybrid structure consisting of MoS2 nanoparticles anchored on the surface of 2D rGO nanosheets in a macroporous framework, which is fully characterized with FESEM, TEM, XRD, Raman spectroscopy and TGA. The resulting ...


Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier Gonzalez-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale III, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs de Boer 2019 University of Vermont

Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier Gonzalez-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer

Mechanical & Materials Engineering Faculty Publications

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed ...


Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. McGeough 2019 University of Nebraska-Lincoln

Glocal Integrity In 420 Stainless Steel By Asynchronous Laser Processing, Michael P. Sealy, Haitham Hadidi, Cody Kanger, X. L. Yan, Bai Cui, J. A. Mcgeough

Mechanical & Materials Engineering Faculty Publications

Cold working individual layers during additive manufacturing (AM) by mechanical surface treatments, such as peening, effectively “prints” an aggregate surface integrity that is referred to as a glocal (i.e., local with global implications) integrity. Printing a complex, pre-designed glocal integrity throughout the build volume is a feasible approach to improve functional performance while mitigating distortion. However, coupling peening with AM introduces new manufacturing challenges, namely thermal cancellation, whereby heat relaxes favorable residual stresses and work hardening when printing on a peened layer. Thus, this work investigates glocal integrity formation from cyclically coupling LENS® with laser peening on 420 stainless ...


Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella 2019 Iowa State University

Acoustofluidic Self-Assembly Of Colloidal Materials For Additive Manufacturing, Meghana Akella

Graduate Theses and Dissertations

Additive manufacturing techniques like 3D printing are being used extensively to produce custom-designed products in all walks of life- from household items to human organs to space shuttle parts. However, most additive manufacturing platforms use single materials or use extremely complicated processes to print multi-material products. Also, the microstructure of the materials cannot be controlled in many cases. The 3D printing sector is a USD 7 Billion market and is expected to grow at a rate of 25% per annum. At this rate of development, the use of printing multi-material components and creating programmable material structures will be crucial for ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills 2019 The University of Akron

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott 2019 University of Kentucky

Towards The Rational Design And Application Of Polymers For Gene Therapy: Internalization And Intracellular Fate, Landon Alexander Mott

Theses and Dissertations--Chemical and Materials Engineering

Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to ...


Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed 2019 Virginia Commonwealth University

Straintronic Nanomagnetic Devices For Non-Boolean Computing, Md Ahsanul Abeed

Theses and Dissertations

Nanomagnetic devices have been projected as an alternative to transistor-based switching devices due to their non-volatility and potentially superior energy-efficiency. The energy efficiency is enhanced by the use of straintronics which involves the application of a voltage to a piezoelectric layer to generate a strain which is ultimately transferred to an elastically coupled magnetostrictive nanomaget, causing magnetization rotation. The low energy dissipation and non-volatility characteristics make straintronic nanomagnets very attractive for both Boolean and non-Boolean computing applications. There was relatively little research on straintronic switching in devices built with real nanomagnets that invariably have defects and imperfections, or their adaptation ...


Segregation Of Mo Atoms Into Stacking Faults In Crfeconimo Alloy, Kaisheng Ming, Xiaofang Bi, Jian Wang 2019 University of Nebraska-Lincoln

Segregation Of Mo Atoms Into Stacking Faults In Crfeconimo Alloy, Kaisheng Ming, Xiaofang Bi, Jian Wang

Mechanical & Materials Engineering Faculty Publications

Solute segregation at dislocations can impede the motion of dislocations, strengthening materials. Here, we study the formation and role of solute segregation at dislocations in CrFeCoNiMo high-entropy alloys (HEAs) by high-angle annular dark-field scanning transmission electron microscopy imaging and mechanical testing both deformed and annealed samples. Mo atoms exhibit pronounced segregation into the planar-extended core of dislocations, i.e. stacking faults, causing the increase in the yield strength while the loss of the ductility. This work suggests that mechanical properties of HEAs can be tailored by alloying additional elements that are in favor of segregation into dislocations.


Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang 2019 University of Nebraska-Lincoln

Fast Growth Of Thin Mapbi3 Crystal Wafers On Aqueous Solution Surface For Efficient Lateral-Structure Perovskite Solar Cells, Ye Liu, Qingfeng Dong, Yanjun Fang, Yuze Lin, Yehao Deng, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Solar-grade single or multiple crystalline wafers are needed in large quantities in the solar cell industry, and are generally formed by a top-down process from crystal ingots, which causes a significant waste of materials and energy during slicing, polishing, and other processing. Here, a bottom-up technique that allows the growth of wafer-size hybrid perovskite multiple crystals directly from aqueous solution is reported. Single-crystalline hybrid perovskite wafers with centimeter size are grown at the top surface of a perovskite precursor solution. As well as saving raw materials, this method provides unprecedented advantages such as easily tunable thickness and rapid growth of ...


Hemodynamic Interference Of Serial Stenoses And Its Impact On Ffr And Ifr Measurements, Siyeong Ju, Linxia Gu 2019 University of Nebraska - Lincoln

Hemodynamic Interference Of Serial Stenoses And Its Impact On Ffr And Ifr Measurements, Siyeong Ju, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

The hemodynamic interference of serial stenoses poses challenges for identifying the functional severity using the fractional flow reserve (FFR) method. The instantaneous wave-free ratio (iFR), i.e., the distal-to-proximal pressure ratio at 75% of diastole, was recently proposed to overcome the disadvantages of the FFR. However, the underlying mechanism remained ambiguous due to the lack of quantitative definition of hemodynamic interference. The objective of this study is to quantitatively define the hemodynamic interference and then examine its role on the FFR and iFR measurements. Pressure distributions, velocity fields, and Q-criterion which identifies vortices, were obtained through the computational fluid dynamics ...


Effects Of Compositional Tailoring On Drug Delivery Behaviours Of Silica Xerogel/Polymer Core-Shell Composite Nanoparticles, Wenfei Huang, Chi Pong Tsui, Chak Yin Tang, Linxia Gu 2019 The Hong Kong Polytechnic University

Effects Of Compositional Tailoring On Drug Delivery Behaviours Of Silica Xerogel/Polymer Core-Shell Composite Nanoparticles, Wenfei Huang, Chi Pong Tsui, Chak Yin Tang, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Conventional core-shell polymer nanoparticles usually exhibit a rapid release rate with their release kinetics mainly adjusted through changing composition of the polymer shells, limiting their applications for prolonged drug delivery. As a solution to these problems, silica xerogel/polymer core-shellstructured composite nanoparticles have been proposed. Different with our previous work centring on studying process variables, we here focused on investigating the effects of key compositional variables on essential properties of the composite nanoparticles. The drug release profiles (in vitro) were well interpreted by the Baker and Lonsdale model on a predicted two-stage basis. The first stage (<1 day) was well controlled from 18.6% to 45.9%; the second stage (1–14 days) was tailored in a range from 28.7 to 58.2% by changing the composition of the silica xerogel cores and polymeric shells. A substantial achievement was reducing the release rate by more than 40 times compared with that of conventional polymer nanoparticles by virtue of the silica xerogel cores. A semi-empirical model was also established in the first attempt to describe the effects of polymer concentration and drug loading capacity on the size of the composite nanoparticles. All these results indicated that the composite nanoparticles are promising candidates for prolonged drug delivery applications.


Flaw Detection With Ultrasonic Backscatter Signal Envelopes, Yongfeng Song, Christopher M. Kube, Zuoxiang Peng, Joseph A. Turner, Xiongbing Li 2019 Central South University

Flaw Detection With Ultrasonic Backscatter Signal Envelopes, Yongfeng Song, Christopher M. Kube, Zuoxiang Peng, Joseph A. Turner, Xiongbing Li

Mechanical & Materials Engineering Faculty Publications

Ultrasound is a prominent nondestructive testing modality for the detection, localization, and sizing of defects in engineering materials. Often, inspectors analyze ultrasonic waveforms to determine if echoes, which stem from the scattering of ultrasound from a defect, exceed a threshold value. In turn, the initial selection of the threshold value is critical. In this letter, a time-dependent threshold or upper bound for the signal envelope is developed based on the statistics governing the scattering of ultrasound from microstructure. The utility of the time-dependent threshold is demonstrated using experiments conducted on sub-wavelength artificial defects. The results are shown to enhance current ...


Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang 2019 University of Nebraska - Lincoln

Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Layered perovskites have been shown to improve the stability of perovskite solar cells while its operation mechanism remains unclear. Here we investigate the process for the conversion of light to electrical current in high performance layered perovskite solar cells by examining its real morphology. The layered perovskite films in this study are found to be a mixture of layered and three dimensional (3D)-like phases with phase separations at micrometer and nanometer scale in both vertical and lateral directions. This phase separation is explained by the surface initiated crystallization process and the competition of the crystallization between 3D-like and layered ...


9r Phase Enabled Superior Radiation Stability Of Nanotwinned Cu Alloys Via In Situ Radiation At Elevated Temperature, Cuncai Fan, Dongyue Xie, Jin Li, Zhongxia Shang, Youxing Chen, Sichuang Xue, Jian Wang, Meimei Li, Anter El-Azab, Haiyan Wang, Xinghang Zhang 2019 Purdue University

9r Phase Enabled Superior Radiation Stability Of Nanotwinned Cu Alloys Via In Situ Radiation At Elevated Temperature, Cuncai Fan, Dongyue Xie, Jin Li, Zhongxia Shang, Youxing Chen, Sichuang Xue, Jian Wang, Meimei Li, Anter El-Azab, Haiyan Wang, Xinghang Zhang

Mechanical & Materials Engineering Faculty Publications

Nanotwinned metals exhibit outstanding radiation tolerance as twin boundaries effectively engage, transport and eliminate radiation-induced defects. However, radiation-induced detwinning may reduce the radiation tolerance associated with twin boundaries, especially at elevated temperatures. Here we show, via in-situ Kr ion irradiation inside a transmission electron microscope, that 3 at. % Fe in epitaxial nanotwinned Cu (Cu97Fe3) significantly improves the thermal and radiation stability of nanotwins during radiation up to 5 displacements-per-atom at 200 °C. Such enhanced stability of nanotwins is attributed to a diffuse 9R phase resulted from the dissociation of incoherent twin boundaries in nanotwinned Cu97Fe ...


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu 2019 University of Nebraska - Lincoln

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus ...


Enhanced Electrochemical Biosensor And Supercapacitor With 3d Porous Architectured Graphene Via Salt Impregnated Inkjet Maskless Lithography, John A. Hondred, Igor L. Medintz, Jonathan C. Claussen 2019 Iowa State University

Enhanced Electrochemical Biosensor And Supercapacitor With 3d Porous Architectured Graphene Via Salt Impregnated Inkjet Maskless Lithography, John A. Hondred, Igor L. Medintz, Jonathan C. Claussen

Mechanical Engineering Publications

Advances in solution-phase graphene patterning has provided a facile route for rapid, low-cost and scalable manufacturing of electrochemical devices, even on flexible substrates. While graphene possesses advantageous electrochemical properties of high surface area and fast heterogenous charge transport, these properties are attributed to the edge planes and defect sites, not the basal plane. Herein, we demonstrate enhancement of the electroactive nature of patterned solution-phase graphene by increasing the porosity and edge planes through the construction of a multidimensional architecture via salt impregnated inkjet maskless lithography (SIIML) and CO2 laser annealing. Various sized macroscale pores (<25 to ∼250 μm) are patterned directly in the graphene surface by incorporating porogens (i.e., salt crystals) in the ...


Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan 2019 Georgia Southern University

Synthesis And Processing Of Nanocapsules Of Single And Multiple Cancer Drugs For Targeted Cancer Therapy, Md Mahmudul Hasan

Electronic Theses and Dissertations

Nanonization and encapsulation of cancer drug has been an effective way of making the drug injectable for EPR based passive targeted delivery. When cancer drugs are subjected to electrospray with high voltage like 30-45kV, it forms drug nanocrystal, which has same efficacy as the normal drug. UV-Vis is used to detect the presence of drug in the sample and later on, drug release pattern over the day is found through UV-Vis as well. The effect of spraying parameter on morphology of nanocrystals are investigated using Scanning Electron Microscope (SEM). On top of that, encapsulation of chemo drug into biocompatible polymer ...


Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe 2019 Virginia Commonwealth University

Resonant Acoustic Wave Assisted Spin-Transfer-Torque Switching Of Nanomagnets, Austin R. Roe

Theses and Dissertations

We studied the possibility of achieving an order of magnitude reduction in the energy dissipation needed to write bits in perpendicular magnetic tunnel junctions (p-MTJs) by simulating the magnetization dynamics under a combination of resonant surface acoustic waves (r-SAW) and spin-transfer-torque (STT). The magnetization dynamics were simulated using the Landau-Lifshitz-Gilbert equation under macrospin assumption with the inclusion of thermal noise. We studied such r-SAW assisted STT switching of nanomagnets for both in-plane elliptical and circular perpendicular magnetic anisotropy (PMA) nanomagnets and show that while thermal noise affects switching probability in in-plane nanomagnets, the PMA nanomagnets are relatively robust to the ...


Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel 2019 Northeastern University

Squeezed Nanocrystals: Equilibrium Configuration Of Metal Clusters Embedded Beneath The Surface Of A Layered Material, Scott E. Julien, Ann Lii-Rosales, Kai-Tak Wan, Yong Han, Michael C. Tringides, James W. Evans, Patricia A. Thiel

Chemistry Publications

Shapes of functional metallic nanocrystals, typically synthesized either free in solution or supported on surfaces, are key for controlling properties. Here, we consider a novel new class of metallic nanocrystals, copper islands embedded near the surface of graphite, which can be considered a model system for metals embedded beneath surfaces of layered materials, or beneath supported membranes. We develop a continuum elasticity (CE) model for the equilibrium shape of these islands, and compare its predictions with experimental data. The CE model incorporates appropriate surface energy, adhesion energies, and strain energy. The agreement between the CE model and the data is ...


Kinetics, Energetics, And Size Dependence Of The Transformation From Pt To Ordered Ptsn Intermetallic Nanoparticles, Minda Chen, Yong Han, Tian Wei Goh, Rong Sun, Raghu V. Maligal‐Ganesh, Yuchen Pei, Chia‐ Kuang Tsung, James W. Evans, Wenyu Huang 2019 Iowa State University

Kinetics, Energetics, And Size Dependence Of The Transformation From Pt To Ordered Ptsn Intermetallic Nanoparticles, Minda Chen, Yong Han, Tian Wei Goh, Rong Sun, Raghu V. Maligal‐Ganesh, Yuchen Pei, Chia‐ Kuang Tsung, James W. Evans, Wenyu Huang

Chemistry Publications

The outstanding catalytic activity and chemical selectivity of intermetallic compounds make them excellent candidates for heterogeneous catalysis. However, the kinetics of their formation at the nanoscale is poorly understood or characterized, and precise control of their size, shape as well as composition during synthesis remains challenging. Here, using well-defined Pt nanoparticles (5 nm and 14 nm) encapsulated in mesoporous silica, we study the transformation kinetics from monometallic Pt to intermetallic PtSn at different temperatures by a series of time-evolution X-ray diffraction studies. Observations indicate an initial transformation stage mediated by Pt surface-controlled intermixing kinetics, followed by a second stage with ...


Digital Commons powered by bepress