Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,504 Full-Text Articles 7,327 Authors 1,400,311 Downloads 110 Institutions

All Articles in Nanoscience and Nanotechnology

Faceted Search

3,504 full-text articles. Page 1 of 150.

Heidelberg Dwl66+ Laser Writer (Lw-01) Standard Operating Procedure, David J. Jones 2023 University of Pennsylvania

Heidelberg Dwl66+ Laser Writer (Lw-01) Standard Operating Procedure, David J. Jones

Protocols and Reports

Standard operating procedure (SOP) for Heidelberg DWL66+ laser writer.


Ipg Green Laser Micromachining Sop, Eric Johnston 2023 Singh Center for Nanotechnology

Ipg Green Laser Micromachining Sop, Eric Johnston

Protocols and Reports

SOP for the 532nm green laser located in QNF.


Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin 2023 American University in Cairo

Polyethersulfone Thin-Film Nanocomposite Membrane Embedded With Amine-Functionalized Graphene Oxide For Desalination Applications, Ahmed Bahaeldin

Theses and Dissertations

Thin-film nanocomposite (TFN) desalination membranes were prepared based on a polyethersulfone (PES) support, where the polyamide (PA) layer was embedded with amine-functionalized graphene oxide (GO). The effect of adding various concentrations of functionalized and un-functionalized GO on the desalination performance, hydrophilicity, and morphology of the membranes was additionally assessed throughout this work. Scanning electron microscopy (SEM) measurements were used to assess the morphology of the membranes in combination with Brunauer-Emmett-Teller (BET) analysis. Contact angle measurements were used to gauge the hydrophilicity of the synthesized membranes. The membrane with the best desalination performance contained 1x10-3 wt/vol% of functionalized GO in …


Solar-Light-Responsive Nanomaterials For The Photoelectrocatalytic Degradation Of Stubborn Pollutants, Benjamin O. Orimolade, Azeez O. Idris, Seyi Philemon Akanji, Folahan A. Adekola, Shohreh Azizi, Malik Maaza, Bhekie Mamba 2023 Edith Cowan University

Solar-Light-Responsive Nanomaterials For The Photoelectrocatalytic Degradation Of Stubborn Pollutants, Benjamin O. Orimolade, Azeez O. Idris, Seyi Philemon Akanji, Folahan A. Adekola, Shohreh Azizi, Malik Maaza, Bhekie Mamba

Research outputs 2022 to 2026

Due to the ever increasing demand for cleaner water, a remarkable focus has been on the use of nanomaterials in wastewater treatment application. Photoelectrocatalytic (PEC) degradation, an advanced oxidation process which combines light and electrical energy, has been identified as a suitable technique capable of achieving total mineralisation of recalcitrant organic pollutants in wastewater. PEC degradation is non-selective, environmentally friendly and possesses great efficiency. The efficiency of PEC degradation has been enhanced by fabricating the photoanodes on a nanoscale with distinct morphologies. These nanostructured photoanodes have been extensively used for the removal of pharmaceuticals, dyes and phenolic water from wastewater. …


Correction: Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2o3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Rupak Timalsina, Christian H. Binek, Abdelghani Laraoui 2023 University of Nebraska-Lincoln

Correction: Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2o3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Rupak Timalsina, Christian H. Binek, Abdelghani Laraoui

Mechanical & Materials Engineering Faculty Publications

Correction for ‘Nanoscale imaging of antiferromagnetic domains in epitaxial films of Cr2O3 via scanning diamond magnetic probe microscopy’ by Adam Erickson et al., RSC Adv., 2023, 13, 178–185, https:// doi.org/10.1039/D2RA06440E


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif 2023 University of Kentucky

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma 2022 New Jersey Institute of Technology

Faceted Nanomaterial Synthesis, Characterizations And Applications In Reactive Electrochemical Membrane Filtration, Qingquan Ma

Dissertations

Facet engineering of nanomaterials, especially metals and metal oxides has become an important strategy for tuning catalytic properties and functions from heterogeneous catalysis to electrochemical catalysis, photocatalysis, biomedicine, fuel cells, and gas sensors. The catalytic properties are highly related to the surface electronic structures, surface electron transport characteristics, and active center structures of catalysts, which can be tailored by surface facet control. The aim of this doctoral dissertation research is to study the facet-dependent properties of metal or metal oxide nanoparticles using multiple advanced characterization techniques. Specifically, the novel atomic force microscope-scanning electrochemical microscope (AFM-SECM) and density functional theory (DFT) …


Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula 2022 New Jersey Institute of Technology

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Rena Compass Srd Standard Operating Procedure, Kyle Keenan 2022 University of Pennsylvania

Rena Compass Srd Standard Operating Procedure, Kyle Keenan

Standard Operating Procedures

SOP for RENA Compass Spin Rinse Dryer Stack in QNF


A Review On Nanomaterials And Nanohybrids Based Bio-Nanocomposites For Food Packaging, Kalpani Y. Perera, Amit K. Jaiswal, Swarna Jaiswal 2022 Technological University Dublin

A Review On Nanomaterials And Nanohybrids Based Bio-Nanocomposites For Food Packaging, Kalpani Y. Perera, Amit K. Jaiswal, Swarna Jaiswal

Articles

With an increasing demand for a novel, eco-friendly, high-performance packaging material “bio-nanocomposites” has attracted great attention in recent years. The review article aims at to evaluating recent innovation in bio-nanocomposites for food packaging applications. The current trends and research over the last three years of the various bio-nanocomposites including inorganic, organic nanomaterials, and nanohybrids, which are suitable as food packaging materials due to their advanced properties such as high mechanical, thermal, barrier, antimicrobial, and antioxidant are described in detail. In addition, the legislation, migration studies, and SWOT analysis on bio-nanocomposite film have been discussed. It has been observed that the …


Phase-Averaged, Frequency Dependence Of Jet Dynamics In A Scaled Up Vocal Fold Model With Full And Incomplete Closure, Nathaniel Wei, Abigail Haworth, Hunter Ringenberg, Michael Krane, Timothy Wei 2022 University of Nebraska–Lincoln

Phase-Averaged, Frequency Dependence Of Jet Dynamics In A Scaled Up Vocal Fold Model With Full And Incomplete Closure, Nathaniel Wei, Abigail Haworth, Hunter Ringenberg, Michael Krane, Timothy Wei

Mechanical & Materials Engineering Faculty Publications

This study focuses on frequency dependence effects on glottal jet dynamics with a focus on the physiological condition in which the vocal folds do not fully close. Incomplete closure occurs naturally in children and adult females. But there are also pathological conditions that can be problematic. Experiments were conducted using a 10× scaled-up model in a free surface water tunnel. Two-dimensional vocal fold models with semicircular medial surfaces were stepper motor driven inside a square duct with constant opening and closing speeds. Cases with complete vocal fold closure and incomplete closure to only 15% of the maximum gap were examined. …


Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan 2022 Marwadi University

Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan

Mechanical & Materials Engineering Faculty Publications

We have proposed a novel approach to detect COVID-19 by detecting the ethyl butanoate which high volume ratio is present in the exhaled breath of a COVID-19 infected person. We have employed a refractive index sensor (RIS) with the help of a metasurface-based slotted T-shape perfect absorber that can detect ethyl butanoate present in exhaled breath of COVID-19 infected person with high sensitivity and in-process SARS-CoV-2. The optimized structure of the sensor is obtained by varying several structure parameters including structure length and thickness, slotted T-shape resonator length, width, and thickness. Sensor’s performance is evaluated based on numerous factors comprising …


Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare 2022 University of Maine

Engineering The Spectrum Of Near-Field Thermal Radiation, Saman Zare

Electronic Theses and Dissertations

Thermal emission observed at sub-wavelength distances from the thermal source is referred to as near-field thermal radiation. Thermal radiation in the near-field regime can exceed Planck’s blackbody limit by orders of magnitude and be quasi-monochromatic. Due to these unique properties, near-field thermal radiation is very promising for several thermal management and energy harvesting applications. Many of these applications, such as nanogap thermophotovoltaics and thermal rectification, require near-field spectra that are not found among natural materials. Artificial metamaterials, which are engineered at the sub-wavelength scale, have been theoretically proposed for tuning the spectrum of near-field thermal radiation. However, engineering the near-field …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi 2022 Washington University in St. Louis

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2O3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Christian H. Binek, Adbelghani Laraoui 2022 University of Nebraska - Lincoln

Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2O3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Christian H. Binek, Adbelghani Laraoui

Mechanical & Materials Engineering Faculty Publications

We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr2O3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e., cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak …


Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores 2022 University of Texas at El Paso

Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores

Open Access Theses & Dissertations

The accumulation of engineered nanomaterials (ENMs) in environmental sectors will continue to increase as more applications are discovered for their unique properties and characteristics. Additionally, the presence of nanomaterials in the environment becomes exacerbated as more consumer products containing nanoparticles are approved for use. It is debated whether the toxic effects of nanoparticles stem from the particles themselves, ionic species, or formation of secondary particles. Therefore, understanding the behavior of nanoparticles in the environment becomes key to discerning the toxicological effects of nanoparticles. Many advancements have been made with ICP-MS to understand the behavior of nanoparticles in the environmental systems, …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes 2022 University of Texas at El Paso

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang 2022 University of Nebraska-Lincoln

High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi 2022 University of Arkansas, Fayetteville

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun 2022 University of Texas at El Paso

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


Digital Commons powered by bepress